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Abstract

This paper deals with the application of a novel neural network technique, support vector machine (SVM), in financial
time series forecasting. The objective of this paper is to examine the feasibility of SVM in financial time series forecasting by
comparing it with a multi-layer back-propagation (BP) neural network. Five real futures contracts that are collated from the
Chicago Mercantile Market are used as the data sets. The experiment shows that SVM outperforms the BP neural network
based on the criteria of normalized mean square error (NMSE), mean absolute error (MAE), directional symmetry (DS) and
weighted directional symmetry (WDS). Since there is no structured way to choose the free parameters of SVMs, the variability
in performance with respect to the free parameters is investigated in this study. Analysis of the experimental results proved
that it is advantageous to apply SVMs to forecast financial time series. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Financial time series forecasting is regarded as one of the
most challenging applications of modern time series fore-
casting. As explained by Deboeck and Yaser [1,2], financial
time series are inherently noisy, non-stationary and deter-
ministically chaotic. The noisy characteristic refers to the un-
availability of complete information from the past behavior
of financial markets to fully capture the dependency between
future and past prices. The information that is not included
in the model is considered as noise. The non-stationary char-
acteristic implies that the distribution of financial time se-
ries is changing over time. By deterministically chaotic, one
means that financial time series are short-term random but
long-term deterministic.

In recent years, neural networks have been successfully
used for modeling financial time series [3-5]. Neural
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networks are universal function approximators that can map
any non-linear function without a priori assumptions about
the properties of the data [6]. Unlike traditional statisti-
cal models, neural networks are data-driven, non-parametric
weak models, and they let “the data speak for themselves”.
Consequently, neural networks are less susceptible to the
problem of model misspecification as compared to most of
the parametric models. Neural networks are also more noise
tolerant, having the ability to learn complex systems with in-
complete and corrupted data. In addition, they are more flex-
ible, having the capability to learn dynamic systems through
a retraining process using new data patterns. So neural net-
works are more powerful in describing the dynamics of fi-
nancial time series in comparison to traditional statistical
models [7-9].

In the area of financial forecasting, the most popular
neural network model is the back-propagation (BP) neu-
ral network due to its simple architecture yet powerful
problem-solving ability. However, the BP neural network
suffers from a number of weaknesses which include the
need for a large number of controlling parameters, dif-
ficulty in obtaining a stable solution and the danger of
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over fitting. The over-fitting problem is a critical issue that
usually leads to poor generalization because the neural net-
work has too large a capacity which causes it to capture
not only the useful information contained in the training
data but also unwanted noises. As a result, it will end up
only memorizing the training data and generalizing poorly
to the out-of-sample data. This issue of generalization has
long been a concern to researchers. The typical approach
is to use a cross-validation data set but this method usually
involves a substantial amount of computation. A variety of
procedures [10—14] have been explored for enhancing the
generalization ability of neural networks.

Recently, a novel neural network algorithm, called sup-
port vector machine (SVM), was developed by Vapnik and
his co-workers [15]. Unlike most of the traditional neural
network models which implement the empirical risk min-
imization principle, SVMs implement the structural risk
minimization principle which seeks to minimize an upper
bound of the generalization error rather than minimize the
training error. This induction principle is based on the fact
that the generalization error is bounded by the sum of the
training error and a confidence interval term that depends
on the Vapnik—Chervonenkis (VC) dimension. Based on
this principle, SVMs achieve an optimum network struc-
ture by striking a right balance between the empirical er-
ror and the VC-confidence interval. This eventually results
in better generalization performance than other neural net-
work models. Another merit of SVMs is that the training
of SVMs is equivalent to solving a linearly constrained
quadratic programming. This means that the solution of
SVMs is unique, optimal and absent from local minima, un-
like other networks’ training which requires non-linear opti-
mization thus running the danger of getting stuck in a local
minima. Originally, SVMs have been developed for pattern
recognition problems [16,17]. However, with the introduc-
tion of Vapnik’s e-insensitive loss function, SVMs have been
extended to solve non-linear regression estimation problems
and they have been shown to exhibit excellent performance
[18-20].

The objectives of this paper are firstly, to examine the
feasibility of applying SVM in financial forecasting by com-
paring it with a BP neural network, and secondly, to in-
vestigate the functional characteristics of SVMs in finan-
cial forecasting. The functional characteristics are obtained
through the selection of the free parameters of SVMs. Since
there is a lack of a structured way to choose the free pa-
rameters of SVMs, experiments are carried out to investi-
gate the variability in performance with respect to the free
parameters.

This paper consists of five sections. Section 2 provides
a brief introduction to SVMs while Section 3 contains the
experimental data. The technique used for data preprocess-
ing and statistical performance metrics are also presented in
Section 3. Section 4 discusses the experimental results fol-
lowed by the conclusions drawn from this study in the last
section.

2. Theory of SVMS in regression approximation

Compared to other neural network regressors, there are
three distinct characteristics when SVMs are used to esti-
mate the regression function. First of all, SVMs estimate
the regression using a set of linear functions that are de-
fined in a high dimensional space. Secondly, SVMs carry
out the regression estimation by risk minimization where the
risk is measured using Vapnik’s e-insensitive loss function.
Thirdly, SVMs use a risk function consisting of the empir-
ical error and a regularization term which is derived from
the structural risk minimization principle.

Given a set of data points G = {(x;,d;)}] (x; is the input
vector, d; is the desired value and # is the total number of
data patterns), SVMs approximate the function using the
following:

y=J(x) =we(x) + b, (1)

where ¢(x) is the high dimensional feature space which is
non-linearly mapped from the input space x. The coefficients
w and b are estimated by minimizing

o 1
Rewis(C) = C> “Lu(ds yi) + 5 [wlf”, 2)
i=1
_Jld=yl—eld—y[>¢
Lod,y) = { 0 otherwise ° 3)

In the regularized risk function given by Eq. (2), the first
term C(1/n)>_7 | Li(d;, y;) is the empirical error (risk).
They are measured by the ¢ -insensitive loss function given
by Eq. (3). This loss function provides the advantage of en-
abling one to use sparse data points to represent the decision
function given by Eq. (1). The second term 1||w||?, on the
other hand, is the regularization term. C is referred to as the
regularized constant and it determines the trade-off between
the empirical risk and the regularization term. Increasing the
value of C will result in the relative importance of the em-
pirical risk with respect to the regularization term to grow.
¢ is called the tube size and it is equivalent to the approxi-
mation accuracy placed on the training data points. Both C
and ¢ are user-prescribed parameters.

To obtain the estimations of w and b, Eq. (2) is trans-
formed to the primal function given by Eq. (4) by introduc-
ing the positive slack variables {; and {; as follows:

Minimize Rsvms(w, () = %HWHZ + CZ(C:‘ + )
i=1
Subjected to  d; — wop(xi) — b < e+ (i,
wh(x)+bi—di <e+(, (=0
4)
Finally, by introducing Lagrange multipliers and exploit-

ing the optimality constraints, the decision function given
by Eq. (1) has the following explicit form [15]:

fraial) =" (ai— a) )K(x.x:) + b. (5)

i=1
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2.1. Lagrange multipliers

In Eq. (5), a; and a; are the so-called Lagrange multi-
pliers. They satisfy the equalities a; x af =0, a; > 0 and
aj = 0 where i = 1,...,n, and are obtained by maximiz-
ing the dual function of Eq. (4) which has the following
form:

R(ai,ai) = id:‘(ﬂi —a)— Ei(ai +a;)

i=1 i=1

S @ a ey - K@), (6)

i=1 j=1
with the constraints

Z(ai —aj)=0,
i=1

0<a <C, i=1,2...,n,

0<q <C,

Based on the Karush—Kuhn—Tucker (KKT) conditions of
quadratic programming, only a certain number of coeffi-
cients (a; — a;) in Eq. (5) will assume non-zero values.
The data points associated with them have approximation
errors equal to or larger than ¢ and are referred to as support
vectors. These are the data points lying on or outside the ¢
-bound of the decision function. According to Eq. (5), it is
evident that support vectors are the only elements of the data
points that are used in determining the decision function as
the coefficients (a; — a;) of other data points are all equal
to zero. Generally, the larger the ¢, the fewer the number
of support vectors and thus the sparser the representation of
the solution. However, a larger ¢ can also depreciate the ap-
proximation accuracy placed on the training points. In this
sense, ¢ is a trade-off between the sparseness of the repre-
sentation and closeness to the data.

i=1,2,...,n.

2.2. Kernel function

K(x;,x;) is defined as the kernel function. The value of
the kernel is equal to the inner product of two vectors JX; and
Xj in the feature space ¢(x;) and ¢(x;), that is, K(x;,x;) =
¢(xi) * ¢(x;). The elegance of using the kernel function is
that one can deal with feature spaces of arbitrary dimension-
ality without having to compute the map ¢(x) explicitly.
Any function satisfying Mercer’s condition [15] can be used
as the kernel function. The typical examples of kernel func-
tion are the polynomial kernel K(x,y) = (x * y + 1)? and
the Gaussian kernel K(x, y) = exp (—1/0*(x — y)?) where
d is the degree of polynomial kernel and & is the band-
width of the Gaussian kernel. The kernel parameter should
be carefully chosen as it implicitly defines the structure of
the high dimensional feature space ¢(x) and thus controls
the complexity of the final solution.

From the implementation point of view, training SVMs
is equivalent to solving a linearly constrained quadratic pro-
gramming (QP) with the number of variables twice as that

of the training data points. The sequential minimal optimiza-
tion algorithm propounded by Scholkopf and Smola [21,22]
is reported to be very effective in training SVMs for solving
the regression problem.

3. Experimental settings
3.1. Data sets

Five real futures contracts collated from the Chicago Mer-
cantile Market are examined in the experiment. They are the
Standard&Poor 500 stock index futures (CME-SP), United
States 30-year government bond (CBOT-US), United States
10-year government bond (CBOT-BO), German 10-year
government bond (EUREX-BUND) and French government
stock index futures (MATIF-CAC40). The corresponding
time periods used are listed in Table 1. The daily closing
prices are used as the data sets.

The original closing price is transformed into a five-day
relative difference in percentage of price (RDP). As men-
tioned by Thomason [23], there are four advantages in ap-
plying this transformation. The most prominent advantage
is that the distribution of the transformed data will become
more symmetrical and will follow more closely a normal
distribution as illustrated in Fig. 1. This modification to the
data distribution will improve the predictive power of the
neural network.

The input variables are determined from four lagged RDP
values based on 5-day periods (RDP-5, RDP-10, RDP-15
and RDP-20) and one transformed closing price (EMA15)
which is obtained by subtracting a 15-day exponential mov-
ing average from the closing price. The subtraction is per-
formed to eliminate the trend in price as the maximum value
and the minimum value is in the ratio of about 2:1 in all
of the five data sets. The optimal length of the moving day
is not critical but it should be longer than the forecasting
horizon of 5 days [24]. EMA1S5 is used to maintain as much
information as contained in the original closing price as
possible, since the application of the RDP transform to the
original closing price may remove some useful information.
The output variable RDP+5 is obtained by first smoothing
the closing price with a 3-day exponential moving aver-
age because the application of a smoothing transform to the
dependent variable generally enhances the prediction

Table 1
Five futures contracts and their corresponding time period

Futures Time period

CME-SP 30/12/1992-30/07/1996
CBOT-US 01/01/1993-01/08/1996
CBOT-BO 01/01/1993-01/08/1996
EUREX-BUND 01/01/1993-01/08/1996

MATIF-CAC40 01/06/1995-01/02/1999
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Fig. 1. Histograms of (a) CME-SP daily closing price and (b) RDP+5. RDP+5 values have a more symmetrical and normal distribution.

Table 2
Input and output variables®

Indicator Calculation

Input variables
EMAI15 P(i) — EMA|5(i)
RDP-5 (p(i) — p(i = 5))/p(i —5) * 100

RDP-10 (p(i) — p(i — 10))/p(i — 10) * 100
RDP-15 (p(i) = p(i — 15))/p(i — 15) * 100
RDP-20 (p(i) — p(i — 20))/p(i — 20) * 100

Output variable
RDP+5 (p(i+5) = p(i))/ p(i) * 100
p(i) = EMA;()

2EMA, (i) is the n-day exponential moving average of the ith
day; and p(7) is the closing price of the ith day.

performance of the neural network [24]. The calculations
for all the indicators are given in Table 2.

The long left tail in Fig. 1(b) indicates that there are out-
liers in the data set. Since outliers may make it difficult
or time-consuming to arrive at an effective solution for the
SVMs, RDP values beyond the limits of +2 standard devi-
ations are selected as outliers. They are replaced with the
closest marginal values. Another pre-processing technique
used in this study is data scaling. All the data points are
scaled into the range of [ — 0.9,0.9] as the data points in-
clude both positive values and negative values. All of the
five data sets are partitioned into three parts according to the
time sequence. The first part is used for training, the second
part used for validation is to select optimal parameters for
the SVMs and to prevent the over-fitting problem found in
the BP neural network. The last part is used for the purpose
of testing. There are a total of 907 data patterns in the train-
ing set, 200 data patterns in both the validation set and the
test set in all the data sets.

Table 3
Performance metrics and their calculations?
Metrics Calculation
NMSE NMSE = 1/(8n) * > (ai — pi)?
P =1/(n—1)x>" (ai — a)>
MAE MAE = 1/n Y7, |a; — pi
DS DS =100/n* Y7, d;
g = V@i —ai)(pi—pi1) 20
! 0 otherwise
WDS WDS =37 dilai — pil/ Y1 dilai — pil
di— 0 (ai —ai—1)(pi — pi-1) 20
1 .
1 otherwise

g =4 V@ —ai)(pi = pi-1) 20
! 0 otherwise

2g; and p; are the actual values and predicted values.

3.2. Performance criteria

The prediction performance is evaluated using the follow-
ing statistical metrics, namely, the normalized mean squared
error (NMSE ), mean absolute error (MAE), directional sym-
metry (DS) and weighted directional symmetry (WDS). The
definitions of these criteria can be found in Table 3. NMSE
and MAE are the measures of the deviation between the ac-
tual and predicted values. The smaller the values of NMSE
and MAE, the closer are the predicted time series values
to the actual values. DS provides an indication of the cor-
rectness of the predicted direction of RDP+5 given in the
form of percentages (a large value suggests a better pre-
dictor). The weighted directional symmetry measures both
the magnitude of the prediction error and the direction. It
penalizes the errors related to incorrectly predicted direc-
tion and rewards those associated with correctly predicted
direction. The smaller the value of WDS, the better is the
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forecasting performance in terms of both the magnitude and
direction.

4. Experimental results
4.1. Results of SVMs and BP

In this investigation, the Gaussian function is used as
the kernel function of the SVMs because Gaussian kernels
tend to give good performance under general smoothness
assumptions. Consequently, they are especially useful if no
additional knowledge of the data is available [22]. This is
also demonstrated in the experiment by comparing the re-
sults obtained using the Gaussian kernel with results ob-
tained using the polynomial kernel. The polynomial kernel
gives inferior results and takes a longer time in the training
of SVMs. The choice of 8> = 10, C = 100 and ¢ = 0.001
is because these values produced the best possible results
according to the validation set. The sequential minimal op-
timization algorithm for solving the regression problem is
implemented in this experiment and the program is devel-
oped using VC** language [25].

A standard three-layer BP network is used as a bench-
mark. There are five nodes in the input layer which is equal
to the number of indicators. The output node is equal to 1,
whereas the number of hidden nodes is determined by us-
ing the formula, W < = M/15, where W is the number of
interconnection weights that satisfies the following equality:

W =(+0)x«H, (7)

where M is the number of training examples, / the number
of input nodes, O the number of output nodes, and H the
number of hidden nodes.

The size of the network is controlled by ensuring that
the ratio of the number of training samples to the number
of weights is equal to or larger than 15. Based on Eq. (7),
the maximal number of hidden nodes is 10. Varying the
number of hidden nodes from 4 to 10, it was determined
that using eight hidden nodes in the BP network gives the
best performance using the same four criteria. The selection
of the learning rate as 0.01 and the momentum term as 0.9
is because a BP network with these settings as the learning
parameters has the best prediction performance with the least
number of epochs [6]. The hidden nodes use the sigmoid
transfer function and the output node uses the linear transfer
function.

In the training of the BP network, the number of epochs
is first chosen as 6000 as there is no prior knowledge of this
value before the experiment. The behavior of the NMSE is
given in Fig. 2(a). In BP, it is evident that the NMSE on
the training set decreases monotonically during the entire
training period. In contrast, the NMSE on the validation set
decreases for the first few hundreds of epochs but increases
for the remaining epochs. This indicates that over-fitting has
occurred in the BP network. Hence, in the later training,

the BP network is first trained using 500 epochs since the
NMSE of the validation set decreases in that period. The
validation set is presented to the network at every 10 epochs
thereafter. If the NMSE on the validation set shows any ten-
dency for increasing, the training of the BP network will be
stopped. This reduces the possibility of over-fitting. In com-
parison, for the SVMs, the NMSE on both the training and
the validation set fluctuate during the initial training period
but gradually converge to a constant value, as is illustrated
in Fig. 2(b).

The results of SVMs and BP on the test set are collated
and the averages of the best five records obtained in 30
trials are given in Table 4. It can be observed that in the
CME-SP, CBOT-US, CBOT-BO and MATIF-CAC40 fu-
tures, SVMs have much smaller NMSE, MAE and WDS
but larger DS than BP. This indicates that SVMs signifi-
cantly outperform BP in these futures, and they can forecast
more accurately and capture the turning points better than
BP. In the EUREX-BUND contract, the difference in perfor-
mance is smaller than that of the other four but nevertheless,
SVMs still outperform BP. Therefore, it can be concluded
that SVMs provide a promising technique in financial times
series forecasting.

4.2. Sensitivity of SV Ms to parameters

In the above experiments, the kernel parameter 6°, C and
¢ are selected based on the validation set. Making use of
a validation set is still not a structured way to select the
free parameters as this iterative process involves expensive
computation. In this section, the NMSE and the number of
support vectors with respect to the three free parameters are
investigated. Only the results for CME-SP are illustrated as
the same can be applied to the other data sets.

Fig. 3(a) gives the NMSE of SVMs at various 67, in
which C and ¢ are, respectively, fixed at 10 and 0.001. The
figure shows that the NMSE on the training set increases
with 6%. On the other hand, the NMSE on the test set de-
creases initially but subsequently increases as 6* increases.
This indicates that too small a value of 6* (0.1-1) causes
SVMs to over-fit the training data while too large a value
of 6% (100—100,000) causes SVMs to under-fit the training
data. An appropriate value for > would be between 1 and
100. In this aspect, it can be said that 6> plays an important
role on the generalization performance of SVMs. Fig. 3(b)
shows that the number of support vector decreases initially
and then increases with 3 as most of the training data points
are converged to the support vectors in the over-fitting and
under-fitting cases.

Fig. 4 gives the results of various C where 6> is chosen as
10 based on the last experiment and ¢ is still fixed at 0.001. It
can be observed that the NMSE on the training set decreases
monotonically as C increases. In contrast, the NMSE on
the test set decreases when C increases from 0.1 to 10 and
maintains an almost constant value as C increases from 10
to 100. However, it starts to increase again when C increases
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Fig. 2. (a) The behavior of NMSE in BP. The NMSE on the training set decreases for the entire period (left) while the NMSE on the
validation set (right) decreases in the first hundreds of epochs but subsequently increases in the remaining epochs. This suggests that
over-fitting has occurred in BP. (b) The behavior of NMSE in SVMs. The NMSE on both the training set (left) and validation set (right)
fluctuate during the initial period and then gradually converge to a constant value.

Table 4
Results of SVMs and BP on the test set
Futures SVMs BP

NMSE MAE DS WDS NMSE MAE DS WDS
CME-SP 0.9365 0.2361 58.29 0.7380 1.0485 0.2556 55.27 0.8273
CBOT-US 1.2970 0.3425 45.22 0.9039 1.3424 0.3609 44.72 0.9882
CBOT-BO 1.1349 0.2989 46.73 0.9563 1.1877 0.3149 41.70 1.1093
EUREX-BUND 1.3337 0.3502 43.21 1.0542 1.3478 0.3520 41.20 1.0977
MATIF-CAC40 1.2083 0.4105 45.22 0.9827 1.2379 0.4224 42.22 1.0960

beyond 100. The reason lies in that a small value for C will
under-fit the training data because the weight placed on the
training data is too small thus resulting in large values of
NMSE on both the training and test sets. On the contrary,
when C is too large, SVMs will over-fit the training set,
leading to a deterioration in the generalization performance.
In this case, an appropriate choice for C would be between

10 and 100. The number of support vectors decreases slightly
as C increases (Fig. 4(b)) because the number of the support
vectors with Lagrange coefficients |a; — a;'| = ¢ decreases
as C increases.

Fig. 5 gives the results of SVMs with various ¢ where
both &* and C are fixed at 10. Fig. 5(a) shows that the
NMSE on both the training set and the test set is very stable
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and relatively unaffected by changes in ¢. This indicates that
the performance of SVMs is insensitive to ¢. However, the
number of support vector decreases as ¢ increases, especially
when ¢ is larger than 0.01 as illustrated in Fig. 5(b). This is
consistent with the result obtained in [15] that the number
of support vector is found to be a decreasing function of e.

5. Conclusions

The use of SVMs in financial time series forecasting
is studied in this paper. The study concluded that SVMs
provide a promising alternative to the BP neural network
for financial time series forecasting. As demonstrated in
the experiment, SVMs forecast significantly better than
the BP network in the CME-SP, CBOT-US, CBOT-BO
and MATIF-CAC40 futures and slightly better in the
EUREX-BUND. The superior performance of SVMs over
BP is due to the following reasons:

(1) SVMs implement the structural risk minimization prin-
ciple which minimizes an upper bound of the general-
ization error rather than minimizes the training error.
This eventually leads to better generalization than the
BP network which implements the empirical risk min-
imization principle.

(2) There are fewer free parameters compared to the BP
network. In SVMs, there are only three free parameters,
namely, &, C and ¢. As illustrated in the experiment,
the performance of SVMs is insensitive to ¢ when a
reasonable value is selected for ¢. However, for the BP
network, there are a large number of controlling param-
eters which include the number of hidden layers, the
number of hidden nodes, the learning rate, the momen-
tum term, epochs, transfer functions and weights initial-
ization methods. All of them are selected empirically.
It is a difficult task to obtain an optimal combination of
parameters which produces the best prediction perfor-
mance.

(3) The BP network may not converge to global solu-
tions. The gradient descent BP algorithm optimizes
the weights in a way that the summed square error is
minimized along the steepest slope of the error surface.
Global solution is not guaranteed because the algorithm
can get stuck in a local minima of the error surface. In
the case of SVMs, training SVMs is equivalent to solv-
ing a linearly constrained quadratic programming, and
the solution of SVMs is unique, optimal and global.

(4) The use of validation set to stop the training of the BP
network requires much experience and care. Although
we have the luxury of using the validation set, it is still
difficult to guarantee that there is no over-fitting in the
BP network. This is often considered as a weakness of
the method.

The investigations of the parameters of SVMs show that
8 and C play an important role in the performance of

SVMs. Improper selection of the two parameters can cause
either over-fitting or under-fitting of the training data. Al-
though the performance of SVMs is insensitive to ¢, the
number of support vectors can be greatly reduced by us-
ing a larger ¢ thus resulting in a sparse representation of
the solution. Based on the results obtained, it is important
to develop a structured way of selecting optimum param-
eters of SVMs considering their significant impact on the
performance.

Since SVMs offer so many advantages in comparison with
the BP network, future research will explore the possibility
of refining the SVMs in order to achieve higher generaliza-
tion performance.
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