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Chapter 11

Unsupervised Learning and

Clustering

11.1 Introduction

U
ntil now we have assumed that the training samples used to design a classi�er were
labelled by their category membership. Procedures that use labelled samples are

said to be supervised. Now we shall investigate a number of unsupervised procedures,
which use unlabelled samples. That is, we shall see what can be done when all one
has is a collection of samples without being told their category.

One might wonder why anyone is interested in such an unpromising problem, and
whether or not it is even possible in principle to learn anything of value from un-
labelled samples. There are at least �ve basic reasons for interest in unsupervised
procedures. First, the collection and labelling of a large set of sample patterns can
be surprisingly costly. For instance, recorded speech is virtually free, but labelling

the speech | marking what word or phoneme is being uttered at each instant | can
be very expensive and time consuming. If a classi�er can be crudely designed on a
small, labelled set of samples, and then \tuned up" by allowing it to run without su-
pervision on a large, unlabelled set, much time and trouble can be saved. Second, one
might wish to proceed in the reverse direction: train with large amounts of (less ex-
pensive) unlabelled data, and only then use supervision to label the groupings found.
This may be appropriate for large \data mining" applications where the contents of
a large database are not known beforehand. Third, in many applications the charac-
teristics of the patterns can change slowly with time, for example in automated food
classi�cation as the seasons change. If these changes can be tracked by a classi�er
running in an unsupervised mode, improved performance can be achieved. Fourth,
we can use unsupervised methods to �nd features, that will then be useful for cate-
gorization. There are unsupervised methods that represent a sort of data-dependent
\smart preprocessing" or \smart feature extraction." Lastly, in the early stages of
an investigation it may be valuable to gain some insight into the nature or structure
of the data. The discovery of distinct subclasses or similarities among patterns or of
major departures from expected characteristics may suggest we signi�cantly alter our
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6 CHAPTER 11. UNSUPERVISED LEARNING AND CLUSTERING

approach to designing the classi�er.
The answer to the question of whether or not it is possible in principle to learn

anything from unlabelled data depends upon the assumptions one is willing to accept
| theorems can not be proved without premises. We shall begin with the very re-
strictive assumption that the functional forms for the underlying probability densitites
are known, and that the only thing that must be learned is the value of an unknown
parameter vector. Interestingly enough, the formal solution to this problem will turn
out to be almost identical to the solution for the problem of supervised learning giv-
en in Chapter ??. Unfortunately, in the unsupervised case the solution su�ers from
the usual problems associated with parametric assumptions without providing any
of the bene�ts of computational simplicity. This will lead us to various attempts to
reformulate the problem as one of partitioning the data into subgroups or clusters.
While some of the resulting clustering procedures have no known signi�cant theo-
retical properties, there are still among the more useful tools for pattern recognition
problems.

11.2 Mixture Densities and Identi�ability

We begin by assuming that we know the complete probability structure for the prob-
lem with the sole exception of the values of some parameters. To be more speci�c, we
make the following assumptions:

1. The samples come from a known number c of classes.

2. The a priori probabilities P (!j) for each class are known, j = 1; :::; c.

3. The forms for the class-conditional probability densities p(xj!j ;�j) are known,
j = 1; :::; c.

4. All that is unknown are the values for the c parameter vectors �1; :::;�c.

Samples are assumed to be obtained by selecting a state of nature !j with prob-
ability P (!j) and then selecting an x according to the probability law p(xj!j ;�j).
Thus, the probability density function for the samples is given by

p(xj�) =
cX

j=1

p(xj!j ;�j)P (!j); (1)

where � = (�1; :::;�c). For obvious reasons, a density function of this form is called
a mixture density. The conditional densities p(xj!j ;�j) are called the component

densities, and the a priori probabilities P (!j) are called the mixing parameters. Thecomponent

densities

mixing

parameters

mixing parameters can also be included among the unknown parameters, but for the
moment we shall assume that only � is unknown.

Our basic goal will be to use samples drawn from this mixture density to estimate
the unknown parameter vector �. Once we know � we can decompose the mixture
into its components, use a Bayesian or maximum likelihood classi�er on the derived
densities, if indeed classi�cation is our �nal goal. Before seeking explicit solutions to
this problem, however, let us ask whether or not it is possible in principle to recover
� from the mixture. Suppose that we had an unlimited number of samples, and that
we used one of the nonparameteric methods of Chapter ?? to determine the value
of p(xj�) for every x. If there is only one value of � that will produce the observed
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values for p(xj�), then a solution is at least possible in principle. However, if several
di�erent values of � can produce the same values for p(xj�), then there is no hope of
obtaining a unique solution.

These considerations lead us to the following de�nition: a density p(xj�) is said
to be identi�able if � 6= �0 implies that there exists an x such that p(xj�) 6= p(xj�0).
Or put another way, a density p(xj�) is not identi�able if we cannot recover a unique
�, even from an in�nite amount of data. In the discouraging situation where we
cannot infer any of the individual parameters (i.e., components of �), the density
is completely unidenti�able.� Note that the identi�ability of � is a property of the completely

unidenti-

fiable

model, irrespective of any procedure we might use to determine its value. As one might
expect, the study of unsupervised learning is greatly simpli�ed if we restrict ourselves
to identi�able mixtures. Fortunately, most mixtures of commonly encountered density
functions are identi�able, as are most complex or high-dimensional density functions
encountered in real-world problems.

Mixtures of discrete distributions are not always so obliging. As a simple example
consider the case where x is binary and P (xj�) is the mixture

P (xj�) =
1

2
�x1 (1� �1)

1�x +
1

2
�x2 (1� �2)

1�x

=

�
1

2
(�1 + �2) if x = 1

1� 1

2
(�1 + �2) if x = 0:

Suppose, for example, that we know for our data that P (x = 1j�) = 0:6, and hence
that P (x = 0j�) = 0:4. Then we know the function P (xj�), but we cannot determine
�, and hence cannot extract the component distributions. The most we can say is
that �1+�2 = 1:2. Thus, here we have a case in which the mixture distribution is com-
pletely unidenti�able, and hence a case for which unsupervised learning is impossible
in principle. Related situations may permit us to determine one or some parameters,
but not all (Problem 32).

This kind of problem commonly occurs with discrete distributions. If there are
too many components in the mixture, there may be more unknowns than independent
equations, and identi�ability can be a serious problem. For the continuous case,
the problems are less severe, although certain minor di�culties can arise due to the
possibility of special cases. Thus, while it can be shown that mixtures of normal
densities are usually identi�able, the parameters in the simple mixture density

p(xj�) = P (!1)p
2�

exp [�1

2
(x� �1)

2] +
P (!2)p

2�
exp [�1

2
(x � �2)

2]

can not be uniquely identi�ed if P (!1) = P (!2), for then �1 and �2 can be inter-
changed without a�ecting p(xj�). To avoid such irritations, we shall acknowledge
that identi�ability can be a problem, but shall henceforth assume that the mixture
densities we are working with are identi�able.

� Technically speaking, a distribution is not identi�able if we cannot determine the parameters
without bias. We might guess their correct value but such a guess would have to be biased in some
way.
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11.3 Maximum Likelihood Estimates

Suppose now that we are given a set H = fx1; :::;xng of n unlabelled samples drawn
independently from the mixture density

p(xj�) =
cX

j=1

p(xj!j ;�j)P (!j); (1)

where the full parameter vector � is �xed but unknown. The likelihood of the observed
samples is, by de�nition, the joint density

p(Hj�) �
nY

k=1

p(xk j�): (2)

The maximum likelihood estimate �̂ is that value of � that maximizes p(Hj�).
If we assume that p(Hj�) is a di�erentiable function of �, then we can derive some

interesting necessary conditions for �̂. Let l be the logarithm of the likelihood, and
let r�i l be the gradient of l with respect to �i. Then

l =

nX
k=1

log p(xk j�) (3)

and

r�i l =
nX

k=1

1

p(xkj�)r�i

2
4 cX
j=1

p(xk j!j ;�j)P (!j)
3
5 : (4)

If we assume that the elements of �i and �j are functionally independent if i 6= j, and
if we introduce the a posteriori probability

P (!ijxk ;�) = p(xkj!i;�i)P (!i)
p(xkj�) ; (5)

we see that the gradient of the log-likelihood can be written in the interesting form

r�i l =
nX

k=1

P (!ijxk;�)r�i log p(xk j!i;�i): (6)

Since the gradient must vanish at the �i that maximizes l, the maximum-likelihood
estimate �̂i must satisfy the conditions

nX
k=1

P (!ijxk; �̂)r�i log p(xk j!i; �̂i) = 0; i = 1; :::; c: (7)

Conversely, among the solutions to these equations for �̂i we will �nd the maximum-
likelihood solution.

It is not hard to generalize these results to include the a priori probabilities P (!i)
among the unknown quantities. In this case the search for the maximum value of
p(Hj�) extends over � and P (!i), subject to the constraints

P (!i) � 0 i = 1; :::; c
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and

cX
i=1

P (!i) = 1:

Let P̂ (!i) be the maximum likelihood estimate for P (!i), and let �̂i be the maximum
likelihood estimate for �i. It can be shown (Problem ??) that if the likelihood function

is di�erentiable and if P̂ (!i) 6= 0 for any i, then P̂ (!i) and �̂i must satisfy

P̂ (!i) =
1

n

nX
k=1

P̂ (!ijxk; �̂) (8)

and

nX
k=1

P̂ (!ijxk; �̂)r�i log p(xkj!i; �̂i) = 0; (9)

where

P̂ (!ijxk; �̂) = p(xkj!i; �̂i)P̂ (!i)
cP

j=1
p(xkj!i; �̂i)P̂ (!i)

: (10)

These equations have the following interpretation. Equation 8 states that the
maximum likelihood estimate of the probability of a category is the average over the
entire data set of the estimate derived from each sample. Note especially that each
sample is weighted equally. Equation 10 is ultimately related to Bayes Theorem, but
notice that in estimating the probability for class !i, the numerator on the right-hand
side depends on �̂i and not the full �̂ directly. While Eq. 9 is a bit subtle, we can
understand it clearly in the trivial k = 1 case. Since P̂ 6= 0, this case states merely
that the probability density is maximized as a function of �i | surely what is needed
for the maximum likelihood solution.

11.4 Application to Normal Mixtures

It is enlightening to see how these general results apply to the case where the compo-
nent densities are multivariate normal, p(xj!i;�i) � N(�i;�i). The following table
illustrates a few of the di�erent cases that can arise depending upon which parameters
are known (�) and which are unknown (?):

Case �i �i P (!i) c

1 ? � � �
2 ? ? ? �
3 ? ? ? ?

Case 1 is the simplest, and will be considered in detail because of its pedagogical
value. Case 2 is more realistic, though somewhat more involved. Case 3 represents the
problem we face on encountering a completely unknown set of data. Unfortunately,
it cannot be solved by maximum-likelihood methods. We shall postpone discussion
of what can be done when the number of classes is unknown until Sect. ??.
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11.4.1 Case 1: Unknown Mean Vectors

If the only unknown quantities are the mean vectors �i, then �i can be identi�ed with
�i and Eq. 7 can be used to obtain necessary conditions on the maximum likelihood
estimate for �i. Since

log p(xj!i;�i) = �log[(2�)d=2j�ij1=2]� 1

2
(x � �i)t��1

i (x� �i); (11)

and

r�
i
log p(xj!i;�i) = ��1

i (x� �i): (12)

Thus, Eq. 7 for the maximum-likelihood estimate �̂i yields

nX
k=1

P (!ijxk ; �̂)��1
i (xk � �̂i) = 0; where �̂ = (�̂1; :::; �̂c): (13)

After multiplying by �i and rearranging terms, we obtain

�̂i =

nP
k=1

P (!ijxk ; �̂)xk
nP

k=1

P (!ijxk; �̂)
: (14)

This equation is intuitively very satisfying. It shows that the maximum likelihood
estimate for �i is merely a weighted average of the samples. The weight for the kth
sample is an estimate of how likely it is that xk belongs to the ith class. If P (!ijxk; �̂)
happened to be 1.0 for some of the samples and 0.0 for the rest, then �̂i would be the
mean of those samples estimated to belong to the ith class. More generally, suppose
that �̂i is su�ciently close to the true value of �i that P (!ijxk; �̂) is essentially the
true a posteriori probability for !i. If we think of P (!ijxk; �̂) as the fraction of
those samples having value xk that come from the ith class, then we see that Eq. 14
essentially gives �̂i as the average of the samples coming from the ith class.

Unfortunately, Eq. 14 does not give �̂i explicitly, and if we substitute

P (!ijxk; �̂) = p(xkj!i; �̂i)P (!i)
cP

j=1
p(xkj!i; �̂i)P (!i)

with p(xj!i; �̂i) � N(�̂i;�i), we obtain a tangled snarl of coupled simultaneous
nonlinear equations. These equations usually do not have a unique solution, and we
must test the solutions we get to �nd the one that actually maximizes the likelihood.

If we have some way of obtaining fairly good initial estimates �̂i(0) for the unknown
means, Eq. 14 suggests the following iterative scheme for improving the estimates:

�̂i(j + 1) =

nP
k=1

P (!ijxk ; �̂(j))xk
nP

k=1

P (!ijxk; �̂(j))
(15)

This is basically a gradient ascent or hill-climbing procedure for maximizing the log-
likelihood function. If the overlap between component densities is small, then the
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coupling between classes will be small and convergence will be fast. However, when
convergence does occur, all that we can be sure of is that the gradient is zero. Like all
hill-climbing procedures, this one carries no guarantee of yielding the global maximum
(Computer Exercise 4).

Example 1: Mixtures of two 1D Gaussians

To illustrate the kind of behavior that can occur, consider the simple two-component
one-dimensional normal mixture:

p(xj�1; �2) = 1

3
p
2�

exp [�1

2
(x � �1)

2]| {z }
!1

+
2

3
p
2�

exp [�1

2
(x� �2)

2]| {z }
!2

:

The 25 samples shown in the Table were drawn from this mixture with �1 = �2
and �2 = 2. Let us use these samples to compute the log-likelihood function

l(�1; �2) =

nX
k=1

log p(xkj�1; �2)

for various values of �1 and �2. Figure 11.1 is a plot showing how l varies with �1 and
�2. The maximum value of l occurs at �̂1 = �2:130 and �̂2 = 1:668, which is in the
rough vicinity of the true values �1 = �2 and �2 = 2. However, l reaches another peak
of comparable height at �̂1 = 2:085 and �̂2 = �1:257. Roughly speaking, this solution
corresponds to interchanging �1 and �2. Note that had the a priori probabilities been
equal, interchanging �1 and �2 would have produced no change in the log-likelihood
function. Thus, as we mentioned before, when the mixture density is not identi�able,
the maximum likelihood solution is not unique.

k xk Class k xk Class
!1 !2 !1 !2

1 0.608 � 13 3.240 �
2 -1.590 � 14 2.400 �
3 0.235 � 15 -2.499 �
4 3.949 � 16 2.608 �
5 -2.249 � 17 -3.458 �
6 2.704 � 18 0.257 �
7 -2.473 � 19 2.569 �
8 0.672 � 20 1.415 �
9 0.262 � 21 1.410 �
10 1.072 � 22 -2.653 �
11 -1.773 � 23 1.396 �
12 0.537 � 24 3.286 �

25 -0.712 �
Additional insight into the nature of these multiple solutions can be obtained by

examining the resulting estimates for the mixture density. Figure 11.2 shows the
true mixture density and the estimates obtained by using the maximum likelihood
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Figure 11.1: Log-likelihood of a mixture model consisting of two univariate Gaussians
as a function of their means, for the data in the Table.

Figure 11.2: The mixture density used to generate sample data, and two maximum
likelihood estimates based on the data in the Table. The data themselves are shown
below.

estimates as if they were the true parameter values. The 25 sample values are shown
as a scatter of points along the abscissa. Note that the peaks of both the true mixture
density and the maximum likelihood solution are located so as to encompass two major
groups of data points. The estimate corresponding to the smaller local maximum of
the log-likelihood function has a mirror-image shape, but its peaks also encompass
reasonable groups of data points. To the eye, neither of these solutions is clearly
superior, and both are interesting.

If Eq. 15 is used to determine solutions to Eq. 14 iteratively, the results depend
on the starting values �̂1(0) and �̂2(0). Figure 11.3 shows how di�erent starting
points lead to di�erent solutions, and gives some indication of rates of convergence.
Note that if �̂1(0) = �̂2(0), convergence to a saddle point occurs in one step. This
is not a coincidence; it happens for the simple reason that for this starting point
P (!ijxk ; �̂i(0); �̂i(0)) = P (!i). Thus, Eq. 15 yields the mean of all of the samples
for �̂1 and �̂2 for all successive iterations. Clearly, this is a general phenomenon, and
such saddle-point solutions can be expected if the starting point does not bias the
search away from a symmetric answer.
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Figure 11.3: Trajectories for the iterative maximum likelihood estimation of the means
of a two-Gaussian mixture model based on the data in the Table.

11.4.2 Case 2: All Parameters Unknown

If �i, �i, and P (!i) are all unknown, and if no constraints are placed on the covariance
matrix, then the maximum likelihood principle yields useless singular solutions. The
reason for this can be appreciated from the following simple example in one dimension.
Let p(xj�; �2) be the two-component normal mixture:

p(xj�; �2) = 1

2
p
2��

exp
h
� 1

2

�x� �

�

�2i
+

1

2
p
2�

exp [�1

2
x2]:

The likelihood function for n samples drawn according to this probability law is merely
the product of the n densities p(xk j�; �2). Suppose that we let � = x1, so that

p(xj�; �2) = 1

2
p
2��

+
1

2
p
2�

exp [�1

2
x2]:

Clearly, for the rest of the samples

p(xkj�; �2) � 1

2
p
2�

exp [�1

2
x2k];

so that

p(x1; :::; xnj�; �2) �
n 1
�
+ exp[�1

2
x21]
o 1

(2
p
2�)n

exp
h
� 1

2

nX
k=2

x2k

i
:

Thus, by letting � approach zero we can make the likelihood arbitrarily large, and
the maximum likelihood solution is singular.
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Ordinarily, singular solutions are of no interest, and we are forced to conclude that
the maximum likelihood principle fails for this class of normal mixtures. However, it
is an empirical fact that meaningful solutions can still be obtained if we restrict our
attention to the largest of the �nite local maxima of the likelihood function. Assuming
that the likelihood function is well behaved at such maxima, we can use Eqs. 8 { 10
to obtain estimates for �i, �i, and P (!i). When we include the elements of �i in
the elements of the parameter vector �i, we must remember that only half of the
o�-diagonal elements are independent. In addition, it turns out to be much more
convenient to let the independent elements of ��1

i rather than �i be the unknown
parameters. With these observations, the actual di�erentiation of

log p(xkj!i;�i) = log
j��1

i j1=2
(2�)d=2

� 1

2
(xk � �i)t��1

i (xk � �i)

with respect to the elements of �i and �
�1
i is relatively routine. Let xp(k) be the pth

element of xk, �p(i) be the pth element of �i, �pq(i) be the pqth element of �i, and
�pq(i) be the pqth element of ��1

i . Then

r�
i
log p(xk j!i;�i) = ��1

i (xk � �i)
and

@log p(xkj!i;�i)
@�pq(i)

=
�
1� �pq

2

��
�pq(i)� (xp(k)� �p(i))(xq(k)� �q(i))

�
;

where �pq is the Kronecker delta. Substituting these results in Eq. 9 and doing a small
amount of algebraic manipulation (Problem 27), we obtain the following equations

for the local-maximum-likelihood estimate �̂i, �̂i, and P̂ (!i):

P̂ (!i) =
1

n

nX
k=1

P̂ (!ijxk; �̂) (16)

�̂i =

nP
k=1

P̂ (!ijxk; �̂)xk
nP

k=1

P̂ (!ijxk; �̂)
(17)

�̂i =

nP
k=1

p̂(!ijxk ; �̂)(xk � �i)(xk � �i)t
nP

k=1

p̂(!ijxk; �̂)
(18)

where

P̂ (!ijxk; �̂) =
p(xkj!i; �̂i)P̂ (!i)
cP

j=1
p(xkj!j ; �̂j)P̂ (!j)

=
j�̂ij�1=2 exp

�� 1

2
(xk � �̂i)t�̂�1

i (xk � �̂i)
�
P̂ (!i)

cP
j=1

j�̂ij�1=2 exp
�� 1

2
(xk � �̂i)t�̂�1

i (xk � �̂i)
�
P̂ (!i)

: (19)
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While the notation may make these equations appear to be rather formidable,
their interpretation is actually quite simple. In the extreme case where P̂ (!ijxk; �̂) is
1.0 when xk is from Class !i and 0.0 otherwise, P̂ (!i) is the fraction of samples from

!i, �̂i is the mean of those samples, and �̂i is the corresponding sample covariance

matrix. More generally, P̂ (!ijxk ; �̂) is between 0.0 and 1.0, and all of the samples
play some role in the estimates. However, the estimates are basically still frequency
ratios, sample means, and sample covariance matrices.

The problems involved in solving these implicit equations are similar to the prob-
lems discussed in Sect. ??, with the additional complication of having to avoid singular
solutions. Of the various techniques that can be used to obtain a solution, the most
obvious approach is to use initial estimates to evaluate Eq. 19 for P̂ (!ijxk ; �̂) and
then to use Eqs. 16 { 18 to update these estimates. If the initial estimates are very
good, having perhaps been obtained from a fairly large set of labelled samples, con-
vergence can be quite rapid. However, the results do depend upon the starting point,
and the problem of multiple solutions is always present. Furthermore, the repeat-
ed computation and inversion of the sample covariance matrices can be quite time
consuming.

Considerable simpli�cation can be obtained if it is possible to assume that the
covariance matrices are diagonal. This has the added virtue of reducing the number
of unknown parameters, which is very important when the number of samples is
not large. If this assumption is too strong, it still may be possible to obtain some
simpli�cation by assuming that the c covariance matrices are equal, which also may
eliminate the problem of singular solutions (Problem 27).

11.4.3 K-means clustering

Of the various techniques that can be used to simplify the computation and acceler-
ate convergence, we shall brie
y consider one elementary, approximate method. From
Eq. 19, it is clear that the probability P̂ (!ijxk; �̂) is large when the squared Maha-

lanobis distance (xk � �̂i)t�̂�1
i (xk � �̂i) is small. Suppose that we merely compute

the squared Euclidean distance kxk � �̂ik2, �nd the mean �̂m nearest to xk, and

approximate P̂ (!ijxk ; �̂) as

P̂ (!ijxk ; �̂) �
n

1 if i = m
0 otherwise:

(20)

Then the iterative application of Eq. 17 leads to the following procedure for �nding
�̂1; :::; �̂c:

K-means clustering

Initialize c means: �1; . . . ;�c initialize
Do classify n samples by closest mean classify samples
recompute means from category samples recompute mean

Until no change in means stopping criterion
End

This is typical of a class of procedures that are known as clustering procedures or
algorithms.� Later on we shall place it in the class of iterative optimization procedures,
since the means tend to move so as to minimize a squared-error criterion function. At

� This algorithm is historically called K-means, where K (our c) is the assumed number of clusters.
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Figure 11.4: Trajectories for the K-means clustering procedure. The �nal Voronoi
tesselation (for classi�cation) is also shown | the means correspond to the \centers"
of the Voronoi cells.

the moment we view it merely as an approximate way to obtain maximum likelihood
estimates for the means. The values obtained can be accepted as the answer, or can
be used as starting points for the more exact computations.

It is interesting to see how this procedure behaves on the example data we saw
before. Figure 11.4 shows the sequence of values for �̂1 and �̂2 obtained for several
di�erent starting points. Since interchanging �̂1 and �̂2 merely interchanges the labels
assigned to the data, the trajectories are symmetric about the line �̂1 = �̂2. The
trajectories lead either to the point �̂1 = �2:176; �̂2 = 1:684 (or to its image). This
is close to the solution found by the maximum likelihood method (viz., �̂1 = �2:130
and �̂2 = 1:688), and the trajectories show a general resemblance to those shown in
Fig. 11.3. In general, when the overlap between the component densities is small the
maximum likelihood approach and the K-means procedure can be expected to give
similar results.

11.5 Unsupervised Bayesian Learning

11.5.1 The Bayes Classi�er

Maximum likelihood methods do not consider the parameter vector � to be random
| it is just unknown. Prior knowledge about the likely values for � is irrelevant,
although in practice such knowledge may be used in choosing good starting points for
hill-climbing procedures. In this section, however, we shall take a Bayesian approach
to unsupervised learning. That is, we shall assume that � is a random variable with
a known a priori distribution p(�), and we shall use the samples to compute the a
posteriori density p(�jH). Interestingly enough, the analysis will closely parallel the
analysis of supervised Bayesian learning (Sect. ??.??), showing that the two problems
are formally very similar.

We begin with an explicit statement of our basic assumptions. We assume that

1. The number of classes c is known.

2. The a priori probabilities P (!j) for each class are known, j = 1; :::; c.
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3. The forms for the class-conditional probability densities p(xj!j ;�j) are known,
j = 1; :::; c, but the full parameter vector � = (�1; :::;�c) is not known.

4. Part of our knowledge about � is contained in a known a priori density p(�).

5. The rest of our knowledge about � is contained in a set H of n samples x1; :::;xn
drawn independently from the familiar mixture density

p(xj�) =
cX

j=1

p(xj!j ;�j)P (!j): (1)

At this point we could go directly to the calculation of p(�jH). However, let us
�rst see how this density is used to determine the Bayes classi�er. Suppose that a
state of nature is selected with probability P (!i) and a feature vector x is selected
according to the probability law p(xj!i;�i). To derive the Bayes classi�er we must use
all of the information at our disposal to compute the a posteriori probability P (!ijx).
We exhibit the role of the samples explicitly by writing this as P (!ijx;H). By Bayes
formula, we have

P (!ijx;H) = p(xj!i;H)P (!ijH)
cP

j=1
p(xj!i;H)P (!ijH)

: (21)

Since the selection of the state of nature !i was done independently of the previously
drawn samples, P (!ijH) = P (!i), and we obtain

P (!ijx;H) = p(xj!i;H)P (!i)
cP

j=1
p(xj!i;H)P (!i)

: (22)

Central to the Bayesian approach, then, is the introduction of the unknown pa-
rameter vector � via

p(xj!i;H) =

Z
p(x;�j!i;H) d�

=

Z
p(xj�; !i;H)p(�j!i;H) d�: (23)

Since the selection of x is independent of the samples, p(xj�; !i;H) = p(xj!i;�i).
Similarly, since knowledge of the state of nature when x is selected tells us nothing
about the distribution of �, we have p(�j!i;H) = p(�jH), and thus

P (xj!i;H) =
Z

p(xj!i;�i)p(�jH) d�: (24)

That is, our best estimate of p(xj!i) is obtained by averaging p(xj!i;�i) over �i.
Whether or not this is a good estimate depends on the nature of p(�jH), and thus
our attention turns at last to that density.
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11.5.2 Learning the Parameter Vector

Using Bayes formula, we can write

p(�jH) = p(Hj�)p(�)R
p(Hj�)p(�) d� (25)

where the independence of the samples yields

p(Hj�) =
nY

k=1

p(xk j�): (26)

Alternatively, letting Hn denote the set of n samples, we can write Eq. 25 in the
recursive form

p(�jHn) =
p(xnj�)p(�jHn�1)R
p(xnj�)p(�jHn�1) d�

: (27)

These are the basic equations for unsupervised Bayesian learning. Equation 25
emphasizes the relation between the Bayesian and the maximum likelihood solutions.
If p(�) is essentially uniform over the region where p(Hj�) peaks, then p(�jH) peaks
at the same place. If the only signi�cant peak occurs at � = �̂, and if the peak is very
sharp, then Eqs. 22 & 24 yield

p(xj!i;H) � p(xj!i; �̂) (28)

and

P (!ijx;H) � p(xj!i; �̂i)P (!i)
cP

j=1
p(xj!j ; �̂j)P (!j)

: (29)

That is, these conditions justify the use of the maximum likelihood estimate as if it
were the true value of � in designing the Bayes classi�er.

As we saw in Sect. ??.??, in the limit of large amounts of data, maximum likelihood
and the Bayes methods will agree (or nearly agree). In fact, even in many small

sample size problems they will agree. Nevertheless there exist distributions where the
approximations are poor (Fig. 11.5). As we saw in the analogous case in supervised
learning (Sect. ??), whether one chooses to use the maximum likelihood or the Bayes
method depends not only on how con�dent one is of the prior distributions, but also
on computational considerations; maximum likelihood techniques however are often
easier to implement.

Of course, if p(�) has been obtained by supervised learning using a large set of
labelled samples, it will be far from uniform, and it will have a dominant in
uence
on p(�jHn) when n is small. Equation 27 shows how the observation of an additional
unlabelled sample modi�es our opinion about the true value of �, and emphasizes
the ideas of updating and learning. If the mixture density p(xj�) is identi�able, then
each additional sample tends to sharpen p(�jHn), and under fairly general conditions
p(�jHn) can be shown to converge (in probability) to a Dirac delta function centered
at the true value of � (Problem 34). Thus, even though we do not know the categories
of the samples, identi�ability assures us that we can learn the unknown parameter
vector �, and thereby learn the component densities p(xj!i;�).
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Figure 11.5: Figure which agree and where disagree.

This, then, is the formal Bayesian solution to the problem of unsupervised learning.
In retrospect, the fact that unsupervised learning of the parameters of a mixture
density is so similar to supervised learning of the parameters of a component density
is not at all surprising. Indeed, if the component density is itself a mixture, there
would appear to be no essential di�erence between the two problems.

There are, however, some signi�cant di�erences between supervised and unsuper-
vised learning. One of the major di�erences concerns the problem of identi�ability.
With supervised learning, the lack of identi�ability merely means that instead of
obtaining a unique parameter vector we obtain an equivalence class of parameter vec-
tors. (For instance, in multilayer neural networks, there may be a large number of
total weight vectors that lead to the same classi�cation boundaries.) However, since
all of these yield the same component density, lack of identi�ability presents no the-
oretical di�culty. With unsupervised learning, lack of identi�ability is much more
serious. When � cannot be determined uniquely, the mixture cannot be decomposed
into its true components. Thus, while p(xjHn) may still converge to p(x), p(xj!i;Hn)
given by Eq. 24 will not in general converge to p(xj!i), and a theoretical barrier to
learning exists. It is here that a few labelled training samples would be valuable: for
\decomposing" the mixture into its components.

Another serious problem for unsupervised learning is computational complexity.
With supervised learning, the possibility of �nding su�cient statistics allows solutions
that are analytically pleasing and computationally feasible. With unsupervised learn-
ing, there is no way to avoid the fact that the samples are obtained from a mixture
density,

p(xj�) =
cX

j=1

p(xj!j ;�j)P (!j); (1)

and this gives us little hope of every �nding simple exact solutions for p(�jH). Such
solutions are tied to the existence of a simple su�cient statistic (Sect. ??.??), and the
factorization theorem requires the ability to factor p(Hj�) as

p(Hj�) = g(s;�)h(H): (30)

But from Eqs. 26 & 1,
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p(Hj�) =
nY

k=1

h cX
j=1

p(xkj!j ;�j)P (!j)
i
: (31)

Thus, p(Hj�) is the sum of cn products of component densities. Each term in this sum
can be interpreted as the joint probability of obtaining the samples x1; :::;xn bearing
a particular labelling, with the sum extending over all of the ways that the samples
could be labelled. Clearly, this results in a thorough mixture of � and the x's, and
no simple factoring should be expected. An exception to this statement arises if the
component densities do not overlap, so that as � varies only one term in the mixture
density is non-zero. In that case, p(Hj�) is the product of the n nonzero terms, and
may possess a simple su�cient statistic. However, since that case allows the class of
any sample to be determined, it actually reduces the problem to one of supervised
learning, and thus is not a signi�cant exception.

Another way to compare supervised and unsupervised learning is to substitute the
mixture density for p(xnj�) in Eq. 27 and obtain

p(�jHn) =

cP
j=1

p(xnj!j ;�j)P (!j)
cP

j=1

R
p(xnj!j ;�j)P (!j)p(�jHn�1) d�

p(�jHn�1): (32)

If we consider the special case where P (!1) = 1 and all the other a priori probabilities
are zero, corresponding to the supervised case in which all samples come from Class
!1, then Eq. 32 simpli�es to

p(�jHn) =
p(xnj!1;�1)R

p(xnj!1;�1)p(�jHn�1) d�
p(�jHn�1): (33)

Let us compare Eqs. 32 & 33 to see how observing an additional sample changes our
estimate of �. In each case we can ignore the denominator, which is independent of �.
Thus, the only signi�cant di�erence is that in the supervised case we multiply the \a
priori" density for � by the component density p(xnj!1;�1), while in the unsupervised
case we multiply it by the mixture density

Pc
j=1 p(xnj!j ;�j)P (!j). Assuming that

the sample really did come from Class !1, we see that the e�ect of not knowing this
category membership in the unsupervised case is to diminish the in
uence of xn on
changing �. Since xn could have come from any of the c classes, we cannot use it with
full e�ectiveness in changing the component(s) of � associated with any one category.
Rather, we must distributed its e�ect over the various categories in accordance with
the probability that it arose from each category.

Example 2: Unsupervised learning of Gaussian data

As an example, consider the one-dimensional, two-component mixture with p(xj!1) �
N(�; 1); p(xj!2; �) � N(�; 1), where �; P (!1) and P (!2) are known. Here

p(xj�) = P (!1)p
2�

exp [�1

2
(x� �)2] +

P (!2)p
2�

exp [�1

2
(x� �)2]:

Viewed as a function of x, this mixture density is a superposition of two normal
densities | one peaking at x = � and the other peaking at x = �. Viewed as a
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function of �, p(xj�) has a single peak at � = x. Suppose that the a priori density
p(�) is uniform from a to b. Then after one observation (x = x1) we have

p(�jx1) = �p(x1j�)p(�)

=

8<
:

�0fP (!1)exp[� 1

2
(x1 � �)2]+

P (!2)exp [� 1

2
(x1 � �)2]g a � � � b

0 otherwise

9=
; ;

where � and �0 are normalizing constants, independent of �. If the sample x1 is in
the range a � x � b, then p(�jx1) peaks at � = x1, of course. Otherwise it peaks
either at � = a if x1 < a or at � = b if x1 > b. Note that the additive constant
exp [�(1=2)(x1 � �)2] is large if x1 is near �, and thus the peak of p(�jx1) is less
pronounced if x1 is near �. This corresponds to the fact that if x1 is near �, it is
more likely to have come from the p(xj!1) component, and hence its in
uence on our
estimate for � is diminished.

With the addition of a second sample x2, p(�jx1) changes to

p(�jx1; x2) = �p(x2j�)p(�jx1)

=

8>>>>>><
>>>>>>:

�0fP (!1)P (!1)exp [� 1

2
(x1 � �)2 � 1

2
(x2 � �)2]

+[P (!1)P (!2)exp [� 1

2
(x1 � �)2 � 1

2
(x2 � �)2]

+[P (!2)P (!1)exp [� 1

2
(x1 � �)2 � 1

2
(x2 � �)2]

+[P (!2)P (!2)exp [� 1

2
(x1 � �)2 � 1

2
(x2 � �)2]g

a � � � b
0 otherwise:

Unfortunately, the primary thing we learn from this expression is that p(�jHn) is
already complicated when n = 2. The four terms in the sum correspond to the
four ways in which the samples could have been drawn from the two component
populations. With n samples there will be 2n terms, and no simple su�cient statistics
can be found to facilitate understanding or to simplify computations.

It is possible to use the relation

p(�jHn) =
p(xnj�)p(�jHn�1)R
p(xnj�)p(�jHn�1) d�

and numerical integration to obtain an approximate numerical solution for p(�jHn).
This was done for the data we have seen using the values � = 2, P (!1) = 1=3, and
P (!2) = 2=3. An a priori density p(�) uniform from -4 to +4 encompasses the data
in the table. When this was used to start the recursive computation of p(�jHn), the
results shown in Fig. 11.6 were obtained. As n goes to in�nity we can con�dently
expect p(�jHn) to approach an impulse centered at � = 2. This graph gives some idea
of the rate of convergence.

One of the main di�erences between the Bayesian and the maximum likelihood
approaches to unsupervised learning appears in the presence of the a priori density
p(�). Figure 11.7 shows how p(�jHn) changes when p(�) is assumed to be uniform from
1 to 3, corresponding to more certain initial knowledge about �. The results of this
change are most pronounced when n is small. It is here (just as in the classi�cation
analog of Chapter ??) that the di�erences between the Bayesian and the maximum
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Figure 11.6: Contours of a log-likelihood function for the data used before.

Figure 11.7: Contours of a log-likelihood function for the data used before.

likelihood solutions are most signi�cant. As n increases, the importance of prior
knowledge diminishes, and in the particular case the curves for n = 25 are virtually
identical. In general, one would expect the di�erence to be small when the number of
unlabelled samples is several times the e�ective number of labelled samples used to
determine p(�).

11.5.3 Decision-Directed Approximation

Although the problem of unsupervised learning can be stated as merely the problem of
estimating parameters of a mixture density, neither the maximum likelihood nor the
Bayesian approach yields analytically simple results. Exact solutions for even the sim-
plest nontrivial examples lead to computational requirements that grow exponentially
with the number of samples (Problem 28). The problem of unsupervised learning is
too important to abandon just because exact solutions are hard to �nd, however, and
numerous procedures for obtaining approximate solutions have been suggested.

Since the basic di�erence between supervised and unsupervised learning is the
presence or absence of labels for the samples, an obvious approach to unsupervised
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learning is to use the a priori information to design a classi�er and to use the decisions
of this classi�er to label the samples. This is called the decision-directed approach to
unsupervised learning, and it is subject to many variations. It can be applied sequen-
tially on-line by updating the classi�er each time an unlabelled sample is classi�ed.
Alternatively, it can be applied in parallel (batch mode) by waiting until all n samples
are classi�ed before updating the classi�er. If desired, this process can be repeated
until no changes occur in the way the samples are labelled. Various heuristics can be
introduced to make the extent of any corrections depend upon the con�dence of the
classi�cation decision.

There are some obvious dangers associated with the decision-directed approach.
If the initial classi�er is not reasonably good, or if an unfortunate sequence of samples
is encountered, the errors in classifying the unlabelled samples can drive the classi�er
the wrong way, resulting in a solution corresponding roughly to one of the lesser
peaks of the likelihood function. Even if the initial classi�er is optimal, the resulting
labelling will not in general be the same as the true class membership; the act of
classi�cation will exclude samples from the tails of the desired distribution, and will
include samples from the tails of the other distributions. Thus, if there is signi�cant
overlap between the component densities, one can expect biased estimates and less
than optimal results.

Despite these drawbacks, the simplicity of decision-directed procedures makes the
Bayesian approach computationally feasible, and a 
awed solution is often better
than none. If conditions are favorable, performance that is nearly optimal can be
achieved at far less computational expense. The literature contains a few rather
complicated analyses of particular decison-directed procedures, and numerous reports
of experimental results. The basic conclusions are that most of these procedures work
well if the parametric assumptions are valid, if there is little overlap between the
component densities, and if the initial classi�er design is at least roughly correct.

11.6 Data Description and Clustering

Let us reconsider our original problem of learning something of use from a set of
unlabelled samples. Viewed geometrically, these samples may form clouds of points
in a d-dimensional space. Suppose that we knew that these points came from a single
normal distribution. Then the most we could learn form the data would be contained
in the su�cient statistics | the sample mean and the sample covariance matrix. In
essence, these statistics constitute a compact description of the data. The sample
mean locates the center of gravity of the cloud. It can be thought of as the single
point x that best represents all of the data in the sense of minimizing the sum of
squared distances from x to the samples. The sample covariance matrix tells us how
well the sample mean describes the data in terms of the amount of scatter that exists
in various directions. If the data points are actually normally distributed, then the
cloud has a simple hyperellipsoidal shape, and the sample mean tends to fall in the
region where the samples are most densely concentrated.

Of course, if the samples are not normally distributed, these statistics can give
a very misleading description of the data. Figure 11.8 shows four di�erent data sets
that all have the same mean and covariance matrix. Obviously, second-order statistics
are incapable of revealing all of the structure in an arbitrary set of data.

By assuming that the samples come from a mixture of c normal distributions,
we can approximate a greater variety of situations. In essence, this corresponds to
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Figure 11.8: Data sets having identical second-order statistics, i.e., the same mean �
and covariance �.

assuming that the samples fall in hyperellipsoidally shaped clouds of various sizes
and orientations. If the number of component densities is su�ciently high, we can
approximate virtually any density function in this way, and use the parameters of the
mixture to describe the data. Alas, we have seen that the problem of estimating the
parameters of a mixture density is not trivial. Furthermore, in situations where we
have relatively little a priori knowledge about the nature of the data, the assumption
of particular parametric forms may lead to poor or meaningless results. Instead of
�nding structure in the data, we would be imposing structure on it.

One alternative is to use one of the nonparametric methods described in Chap-
ter ?? to estimate the unknown mixture density. If accurate, the resulting estimate is
certainly a complete description of what we can learn from the data. Regions of high
local density, which might correspond to signi�cant subclasses in the population, can
be found from the peaks or modes of the estimated density.

If the goal is to �nd subclasses, a more direct alternative is to use a clustering

procedure. Roughly speaking, clustering procedures yield a data description in termsclustering

procedure of clusters or groups of data points that possess strong internal similarities. The
more formal procedures use a criterion function, such as the sum of the squared
distances from the cluster centers, and seek the grouping that extremizes the criterion
function. Because even this can lead to unmanageable computational problems, other
procedures have been proposed that are intuitively appealing but that lead to solutions
having few if any established properties. Their use is usually justi�ed on the ground
that they are easy to apply and often yield interesting results that may guide the
application of more rigorous procedures.

11.7 Similarity Measures

Once we describe the clustering problem as one of �nding natural groupings in a set
of data, we are obliged to de�ne what we mean by a natural grouping. In what what
sense are we to say that the samples in one cluster are more like one another than
like samples in other clusters? This question acutally involves two separate issues:

� How should one measure the similarity between samples?
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Figure 11.9: The e�ect of distance threshold on clustering | lines are drawn between
points closer than a distance d0 apart. a) Large d0. b) Intermediate d0. c) Small d0.

� How should one evaluate a partitioning of a set of samples into clusters?

In this section we address the �rst of these issues.
The most obvious measure of the similarity (or dissimilarity) between two samples

is the distance between them. One way to begin a clustering investigation is to de�ne
a suitable distance function and compute the matrix of distances between all pairs
of samples. If distance is a good measure of dissimilarity, then one would expect the
distance between samples in the same cluster to be signi�antly less than the distance
between samples in di�erent clusters.

Suppose for the moment that we say that two samples belong to the same cluster
if the Euclidean distance between them is less than some threshold distance d0. It is
immediately obvious that the choice of d0 is very important. If d0 is very large, all
of the samples will be assigned to one cluster. If d0 is very small, each sample will
form an isolated cluster. To obtain \natural" clusters, d0 will have to be greater than
the typical within-cluster distances and less than typical between-cluster distances
(Fig. 11.9).

Less obvious perhaps is the fact that the results of clustering depend on the choice
of Euclidean distance as a measure of dissimilarity. That particular choice is justi�ed
if the feature space is isotropic; consequently clusters de�ned by Euclidean distance
will be invariant to translations or rotations in feature space | rigid-body motions
of the data points. However, they will not be invariant to linear transformations in
general, or to other transformations that distort the distance relationships. Thus, as
Fig. 11.10 illustrates, a simple scaling of the coordinate axes can result in a di�erent
grouping of the data into clusters. Of course, this is of no concern for problems in
which arbitrary rescaling is an unnatural or meaningless transformation. However, if
clusters are to mean anything, they should be invariant to transformations natural to
the problem.

One way to achieve invariance is to normalize the data prior to clustering. For
example, to obtain invariance to displacement and scale changes, one might translate
and scale the axes so that all of the features have zero mean and unit variance. To
obtain invariance to rotation, one might rotate the axes so that they coincide with
the eigenvectors of the sample covariance matrix. This transformation to principal

components can be preceded and/or followed by normalization for scale.
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Figure 11.10: The e�ect of scaling on the apparent clustering.

Figure 11.11: The undesirable e�ects of normalization.

However, the reader should not conclude that this kind of normalization is neces-
sarily desirable. Consider, for example, the matter of translating and scaling the axes
so that each feature has zero mean and unit variance. The rationale usually given for
this normalization is that it prevents certain features from dominating distance calcu-
lations merely because they have large numerical values, much as we saw in networks
trained with backpropagation (Sect. ??.??). Subtracting the mean and dividing by
the standard deviation is an appropriate normalization if this spread of values is due
to normal random variation; however, it can be quite inappropriate if the spread is
due to the presence of subclasses (Fig. 11.11). Thus, this routine normalization may
be less than helpful in the cases of greatest interest.� Section ?? describes some
better ways to obtain invariance to scaling.

Instead of scaling axes, we can change the metric in interesting ways. For instance,
one broad class of distance metrics is of the form

� In backpropagation, one of the goals for such preprocessing and scaling of data was to increase
learning speed; in contrast, such preprocessing does not signi�cantly a�ect the speed of these
clustering algorithms.
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Figure 11.12: The set of points equidistant from the origin for the Minkowski metric
with di�erent values of q. For q = 2 (i.e., the Euclidean metric) the set is a d-
dimensional hypersphere; for q = 1 the city block metric.

d(x;x0) =

 
dX

k=1

jxk � x0kjq
!1=q

; (34)

where q � 1 is a selectable parameter | the general Minkowski metric. Setting Minkowski

metricq = 2 gives the familiar Euclidean metric while setting q = 1 the Manhattan or city
block metric | the sum of the absolute distances along each of the d coordinate axes city block

(Fig. 11.12). Note that only q = 2 is invariant to an arbitrary rotation or translation
in feature space. Another alternative is to use some kind of metric based on the data
itself, such as the Mahalanobis distance.

More generally, one can abandon the use of distance altogether and introduce a
nonmetric similarity function s(x;x0) to compare two vectors x and x0. Convention- similarity

functionally, this is a symmetric functions whose value is large when x and x0 are somehow
\similar." For example, when the angle between two vectors is a meaningful measure
of their similarity, then the normalized inner product

s(x;x0) =
xtx0

kxk kx0k (35)

may be an appropriate similarity function. This measure, which is the cosine of the
angle between x and x0, is invariant to rotation and dilation, though it is not invariant
to translation and general linear transformations.

When the features are binary valued (0 or 1), this similarity functions has a sim-
ple non-geometrical interpretation in terms of measuring shared features or shared
attributes. Let us say that a sample x possesses the ith attribute if xi = 1. Then
xtx0 is merely the number of attributes possessed by both x and x0, and kxk kx0k =
(xtxx0tx0)1=2 is the geometric mean of the number of attributes possessed by x and
the number possessed by x0. Thus, s(x;x0) is a measure of the relative possession of
common attributes. Some simple variation are

s(x;x0) =
xtx0

d
; (36)

the fraction of attributes shared, and
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s(x;x0) =
xtx0

xtx+ x0tx0 � xtx0
; (37)

the ratio of the number of shared attributes to the number possessed by x or x0. This
latter measure (sometimes known as the Tanimoto coe�cient or Tanimoto distance)Tanimoto

distance is frequently encountered in the �elds of information retrieval and biological taxono-
my. Other measures of similarity arise in other applications, the variety of measures
testifying to the diversity of problem domains.

One might wish to insure invariance transformations in the feature space, and
thus tangent distance (Sect. ??.??) would be appropriate. Rewritten in our current
terminology, the (two-sided) tangent distance is

d(x;x0) = min
�1;�2

jjx+�1T1(x) � (x0 +�2T2(x
0))jj2; (38)

where the columns of T1 and T2 represent vectors corresponding to di�erent trans-
formations of x and x0, respectively. That is, the tangent distance is the minimum
(squared) Euclidean distance after the optimal linear transformation have been per-
formed on the patterns (Sect. ??.??). In the case of 2D spatial patterns could represent
transformations such as rotation, translation, scale, and so on.

Fundamental issues in measurement theory are involved in the use of any distance
or similarity function. The calculation of the similarity between two vectors always
involves combining the values of their components. Yet, in many pattern recognition
applications the components of the feature vector measure seemingly noncomparable
quantities, such as meters and kilograms. Recall our example of classifying �sh: how
can one compare the lightness of the skin to the length or weight of the �sh? Should
the comparison depend on whether the length is measured in meters or inches? How
does one treat vectors whose components have a mixture of nominal, ordinal, interval
and ratio scales?� Ultimately, there are rarely clear methodological answers to these
questions. When a user selects a particular similarity function or normalizes the data
in a particular way, information is introduced that gives the procedure meaning. We
have given examples of some alternatives that have proved to be useful. Beyond that
we can do little more than alert the unwary to these pitfalls of clustering.

Amidst all this discussion of clustering, we must not lose sight of the fact that
often the clusters found will later be labelled (e.g., by resorting to a teacher or small
number of labelled samples), and that the clusters can then be used for classi�cation.
In that case, the same similarity (or metric) should be used for classi�cation as was
used for forming the clusters (Computer Exercise 6).

11.8 Criterion Functions for Clustering

We have just considered the �rst major issue in clustering: how to measure \similar-
ity." Now we turn to the second major issue: the criterion function to be optimized.

Suppose that we have a set H of n samples x1; :::;xn that we want to partition
into exactly c disjoint subsets H1; :::;Hc. Each subset is to represent a cluster, with
samples in the same cluster begin somehow more similar than samples in di�erent

� These fundamental considerations are by no means unique to clustering. They appear, for example,
whenever one chooses a parametric form for an unknown probability density function, a metric for
non-parametric density estimation, or scale factors for linear discriminant functions. Clustering
problems merely expose them more clearly.
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clusters. One way to make this into a well-de�ned problem is to de�ne a criterion
function that measures the clustering quality of any partition of the data. Then the
problem is one of �nding the partition that extremizes the criterion function. In this
section we examine the characteristics of several basically similar criterion functions,
postponing until later the question of how to �nd an optimal partition.

11.8.1 The Sum-of-Squared-Error Criterion

The simplest and most widely used criterion function for clustering is the sum-of-
squared-error criterion. Let ni be the number of samples in Hi and let mi be the
mean of those samples,

mi =
1

ni

X
x2Hi

x: (39)

Then the sum of squared errors is de�ned by

Je =

cX
i=1

X
x2Hi

kx�mik2: (40)

This criterion function has a simple interpretation: for a given cluster Hi, the
mean vector mi is the best representative of the samples in Hi in the sense that it
minimizes the sum of the squared lengths of the \error" vectors x�mi in Hi. Thus,
Je measures the total squared error incurred in representing the n samples x1; :::;xn
by the c cluster centers m1; :::;mc. The value of Je depends on how the samples are
grouped into clusters, and an optimal partitioning is de�ned as one that minimizes
Je. Clusterings of this type are often called minimum variance partitions. minimum

varianceWhat kind of clustering problems are well suited to a sum-of-squared-error cri-
terion? Basically, Je is an appropriate criterion when the clusters form essentially
compact clouds that are rather well separated from one another. It should work well
for the two or three clusters in Fig. 11.13, but one would not expect reasonable results
for the data in Fig. 11.14. A less obvious problem arises when there are great di�er-
ences in the number of samples in di�erent clusters. In that case it can happen that a
partition that splits a large cluster is favored over one that maintains the integrity of
the clusters merely because the slight reduction in squared error achieved is multiplied
by many terms in the sum (Fig. 11.15). This situation frequently arises because of the
presence of \outliers" or \wild shots," and brings up the problem of interpreting and
evaluating the results of clustering. Since little can be said about that problem, we
shall merely observe that if additional considerations render the results of minimizing
Je unsatisfactory, then these considerations should be used, if possible, in formulating
a better criterion function.

11.8.2 Related Minimum Variance Criteria

By some simple algebraic manipulation we can eliminate the mean vectors from the
expression for Je and obtain the equivalent expression

Je =
1

2

cX
i=1

ni�si; (41)

where
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Figure 11.13: A two-dimensional section of the Anderson iris data.

Figure 11.14: The Herzsprung-Russell Diagram.

Figure 11.15: The problem of splitting large clusters: The sum of squared error is
smaller for a) than for b).
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�si =
1

n2

X
x2Hi

X
x02Hi

kx� x0k2: (42)

Equation 42 leads us to interpret �si as the average squared distance between points
in the ith cluster, and emphasizes the fact that the sum-of-squared-error criterion uses
Euclidean distance as the measure of similarity. It also suggests an obvious way of
obtaining other criterion functions. For example, one can replace �si by the average,
the median, or perhaps the maximum distance between points in a cluster. More
generally, one can introduce an appropriate similarity function s(x;x0) and replace �si
by functions such as

�si =
1

n2i

X
x2Hi

X
x02Hi

s(x;x0) (43)

or

�si = min
x;x02Hi

s(x;x0): (44)

As before, we de�ne an optimal partioning as one that extremizes the criteri-
on function. This creates a well-de�ned problem, and the hope is that its solution
discloses the intrinsic structure of the data.

11.8.3 Scattering Criteria

The scatter matrices

Another interesting class of criterion functions can be derived from the scatter matri-
ces used in multiple discriminant analysis. The following de�nitions directly parallel
the de�nitions given in Sect.??.??.

Depend on
cluster
center?

Yes No

Mean vector for
the ith cluster

� mi =
1

ni

X
x2Hi

x (45)

Total mean vector � m =
1

n

X
H

x =
1

n

cX
i=1

nimi (46)

Scatter matrix for
the ith cluster

� Si =
X
x2Hi

(x�mi)(x�mi)
t (47)

Within-cluster
scatter matrix

� SW =

cX
i=1

Si (48)

Between-cluster
scatter matrix

� SB =

cX
i=1

ni(mi �m)(mi �m)t (49)

Total scatter matrix � ST =
X
x2H

(x �m)(x�m)t (50)

As before, it follows from these de�nitions that the total scatter matrix is the sum
of the within-cluster scatter matrix and the between-cluster scatter matrix:
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ST = SW + SB : (51)

Note that the total scatter matrix does not depend on how the set of samples is
partitioned into clusters; it depends only on the total set of samples. The within-
cluster and between-cluster scatter matrices do depend on the partitioning, however.
Roughly speaking, there is an exchange between these two matrices, the between-
cluster scatter going up as the within-cluster scatter goes down. This is fortunate,
since by trying to minimize the within-cluster scatter we will also tend to maximize
the between-cluster scatter.

To be more precise in talking about the amount of within-cluster or between-
cluster scatter, we need a scalar measure of the \size" of a scatter matrix. The two
measures that we shall consider are the trace and the determinant. In the univariate
case, these two measures are equivalent, and we can de�ne an optimal partition as one
that minimizes SW or maximizes SB . In the multivariate case things are somewhat
more complicated, and a number of related but distinct optimality criteria have been
suggested.

The Trace Criterion

Perhaps the simplest scalar measure of a scatter matrix is its trace | the sum of its
diagonal elements. Roughly speaking, the trace measures the square of the scattering
radius, since it is proportional to the sum of the variances in the coordinate directions.
Thus, an obvious criterion function to minimize is the trace of SW . In fact, this
criterion is nothing more or less than the sum-of-squared-error criterion, since the
de�nitions of scatter matrices (Eqs. 47 & 48) yield

tr SW =

cX
i=1

tr Si =

cX
i=1

X
x2Hi

kx�mik2 = Je: (52)

Since trST = trSW+trSB and trST is independent of how the samples are partitioned,
we see that no new results are obtained by trying to maximize trSB . However, it is
comforting to know that in seeking to minimize the within-cluster criterion Je = trSW
we are also maximizing the between-cluster criterion

trSB =

cX
i=1

nikmi �mk2: (53)

The Determinant Criterion

In Sect. ?? we used the determinant of the scatter matrix to obtain a scalar measure
of scatter. Roughly speaking, this measures the square of the scattering volume, since
it is proportional to the product of the variances in the directions of the principal
axes. Since SB will be singular if the number of clusters is less than or equal to the
dimensionality, jSB j is obviously a poor choice for a criterion function. Furthermore,
SB may become singular, and will certainly be so if n�c is less than the dimensionality
d.� However, if we assume that SW is nonsingular, we are led to consider the criterion

� This follows from the fact that the rank of Si can not exceed ni � 1, and thus the rank of SW
can not exceed

P
(ni � 1) = n� c. Of course, if the samples are con�ned to a lower dimensional

subspace it is possible to have SW be singular even though n� c � d. In such cases, some kind of
dimensionality-reduction procedure must be used before the determinant criterion can be applied
(see Sect.??).
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function

Jd = jSW j =
��� cX
i=1

Si

���: (54)

The partition that minimizes Jd is often similar to the one that minimizes Je, but
the two need not be the same. We observed before that the minimum-squared-error
partition might change if the axes are scaled, though this does not happen with Jd
(Problem 29). Thus Jd is to be favored under conditions where there may be unknown
or irrelevant linear transformations of the data.

Invariant Criteria

It is not particularly hard to show that the eigenvalues �1; :::; �d or S
�1
W SB are invari-

ant under nonsingular linear transformations of the data (Problem 31). Indeed, these
eigenvalues are the basic linear invariants of the scatter matrices. Their numerical
values measure the ratio of between-cluster to within-cluster scatter in the direction
of the eigenvectors, and partitions that yield large values are usually desirable. Of
course, as we pointed out in Sect. ??, the fact that the rank of SB can not exceed
c�1 means that no more than c�1 of these eigenvalues can be nonzero. Nevertheless,
good partitions are ones for which the nonzero eigenvalues are large.

One can invent a great variety of invariant clustering criteria by composing appro-
priate functions of these eigenvalues. Some of these follow naturally from standard
matrix operations. For example, since the trace of a matrix is the sum of its eigen-
values, one might elect to maximize the criterion function�

trS�1W SB =
dX
i=1

�i: (55)

By using the relation ST = SW +SB , one can derive the following invariant relatives
of tr SW and jSW j (Problem 24):

trS�1T SW =

dX
i=1

1

1 + �i
(56)

and

jSW j
jST j =

dY
i=1

1

1 + �i
: (57)

Since all of these criterion functions are invariant to linear transformations, the
same is true of the partitions that extremize them. In the special case of two clusters,
only one eigenvalue is nonzero, and all of these criteria yield the same clustering.
However, when the samples are partitioned into more than two clusters, the optimal
partitions, though often similar, need not be the same (Fig. 11.16).

� Another invariant criterion is

jS�1
W
SB j =

dY
i=1

�i;

though since its value is usually zero it is not very useful.



34 CHAPTER 11. UNSUPERVISED LEARNING AND CLUSTERING

Figure 11.16: For more than two clusters, linear transformations can change the
clustering.

Figure 11.17: a) for ???, b) for ??? c) for ??? for the data in the Table.

Example 3: Clustering criteria

We can gain insight into these criteria by applying them to the following data set.

sample x1 x2 x3 sample x1 x2 x3
1 0.35 0.366 1.39 11 0.395 1.04 1.11
2 0.305 0.421 1.02 12 0.366 0.579 1.31
3 0.395 0.287 1.66 13 0.307 0.354 1.65
4 0.312 0.831 1.51 14 0.319 0.655 1.14
5 0.345 0.214 1.36 15 0.317 0.593 1.66
6 0.363 0.205 1.58 16 0.34 0.205 1.07
7 0.319 0.903 0.995 17 0.379 0.619 1.36
8 0.346 0.203 1.54 18 0.308 0.208 1.28
9 0.363 0.212 1.35 19 0.328 0.253 0.998
10 0.368 1.03 1.19 20 0.379 0.213 1.29
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With regard to the criterion function involving ST , note that ST does not depend
on how the samples are partitioned into clusters. Thus, the clusterings that minimize
jSW j=jST j are exactly the same as the ones that minimize jSW j. If we rotate and scale
the axes so that ST becomes the identity matrix, we see that minimizing trS�1T SW
is equivalent to minimizing the sum-of-squared-error criterion tr SW after performing
this normalization. Clearly, this criterion su�ers from the very defects that we warned
about in Sect. ??, and it is probably the least desirable of these criteria.

One �nal warning about invariant criteria is in order. If di�erent apparent clusters
can be obtained by scaling the axes or by applying any other linear transformation,
then all of these groupings will be exposed by invariant procedures. Thus, invariant
criterion functions are more likely to posses multiple local extrema, and are corre-
spondingly more di�cult to optimize.

The variety of the criterion functions we have discussed and the somewhat subtle
di�erences between them should not be allowed to obscure their essential similarity. In
every case the underlying model is that the samples form c fairly well separated clouds
of points. The within-cluster scatter matrix SW is used to measure the compactness
of these clouds, and the basic goal is to �nd the most compact grouping. While this
approach has proved useful for many problems, it is not universally applicable. For
example, it will not extract a very dense cluster embedded in the center of a di�use
cluster, or separate intertwined line-like clusters. For such cases one must devise other
criterion functions that are better matched to the structure present or being sought.

11.9 Iterative Optimization

Once a criterion function has been selected, clustering becomes a well-de�ned problem
in discrete optimization: �nd those partitions of the set of samples that extremize the
criterion function. Since the sample set is �nite, there are only a �nite number of
possible partitions. Thus, in theory the clustering problem can always be solved by
exhaustive enumeration. However, the computational complexity renders such an
approach unthinkable for all but the simplest problems. There are approximately
cn=c! ways of partitioning a set of n elements into c subsets, and this exponential
growth with n is overwhelming (Problem 22). For example an exhaustive search for
the best set of 5 clusters in 100 samples would require considering more than 1067

partitionings. Simply put, in most applications an exhaustive search is completely
infeasible.

The approach most frequently used in seeking optimal partitions is iterative op-
timization. The basic idea is to �nd some reasonable initial partition and to \move"
samples from one group to another if such a move will improve the value of the cri-
terion function. Like hill-climbing procedures in general, these approaches guarantee
local but not global optimization. Di�erent starting points can lead to di�erent solu-
tions, and one never knows whether or not the best solution has been found. Despite
these limitations, the fact that the computational requirements are bearable makes
this approach signi�cant.

Let us consider the use of iterative improvement to minimize the sum-of-squared-
error criterion Je, written as

Je =

cX
i=1

Ji; (58)

where an e�ective error per cluster is
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Ji =
X
x2Hi

kx�mik2 (59)

and the mean of each cluster is, as before,

mi =
1

ni

X
x2Hi

x: (39)

Suppose that a sample x̂ currently in cluster Hi is tentatively moved to Hj . Then
mj changes to

m�
j =mj +

x̂�mj

nj + 1
(60)

and Jj increases to

J�j =
X
x2Hi

kx�m�
jk2 + kx̂�m�

jk2

=

 X
x2Hi

kx�mj � x̂�mj

nj + 1
k2
!
+ k nj

nj + 1
(x̂ �mj)k2

= Jj +
nj

nj + 1
kx̂�mjk2: (61)

Under the assumption that ni 6= 1 (singleton clusters should not be destroyed), a
similar calculation (Problem 30) shows that mi changes to

m�
i =m� x̂�mi

ni � 1
(62)

and Ji decreases to

J�i = Ji � ni
ni � 1

kx̂�mjk2: (63)

These equations greatly simplify the computation of the change in the criterion
function. The transfer of x̂ from Hi to Hj is advantageous if the decrease in Ji is
greater than the increase in Jj . This is the case if

ni
ni � 1

kx̂�mik2 > nj
nj + 1

kx̂�mjk2; (64)

which typically happens whenever x̂ is closer to mj than mi. If reassignment is
pro�table, the greatest decrease in sum of squared error is obtained by selecting the
cluster for which nj=(nj + 1)kx̂ � mjk2 is minimum. This leads to the following
clustering procedure:
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Basic Minimum Squared Error Clustering

Initialize select partition of n samples,

compute Je and c means m1; . . . ;mc initialize
Do Select a candidate sample x̂; next sample

suppose x̂ 2 Hi

If ni = 1, Go to *, Else compute singleton cluster?

�j =

(
nj

nj+1
kx̂�mjk2 j 6= i

nj
nj�1

kx̂�mik2 j = i:
criterion

If �k � �j for all j, transfer x̂ to Hk improve criterion
Update Je;mi and mk recompute
* If Je has not changed in n attempts, End local optimum found
Else Return local optimum not yet found

End

If this procedure is compared to the Basic K-means procedure described in Sec-
t. ??, it is clear that the former is essentially a sequential version of the latter. Where
the Basic K-means procedure waits until all n samples have been reclassi�ed before
updating, the Basic Minimum Squared Error procedure updates after each sample
is reclassi�ed. It has been experimentally observed that this procedure is more suscep-
tible to being trapped in local minima, and it has the further disadvantage of making
the results depend on the order in which the candidates are selected. However, it is at
least a stepwise optimal procedure, and it can be easily modi�ed to apply to problems
in which samples are acquired sequentially and clustering must be done on-line.

One question that plagues all hill-climbing procedures is the choice of the starting
point. Unfortunately, there is no simple, universally good solution to this problem.
One approach is to select c samples randomly for the initial cluster centers, using
them to partition the data on a minimum-distance basis. Alternatively, repetition
with di�erent random selections can give some indication of the sensitivity of the
solution to the starting point. Yet another aproach is to �nd the c-cluster starting
point from the solutions to the (c�a)-cluster problem. The solution for the one-cluster
problem is the total sample mean; the starting point for the c-cluster problem can be
the �nal means for the (c � a)-cluster problem plus the sample that is farthest from
the nearest cluster center. This approach leads us directly to the so-called hierarchical
clustering procedures, which are simple methods that can provide very good starting
points for iterative optimization.

11.10 Hierarchical Clustering

Up to now, our methods have formed disjoint clusters | in computer science termi-
nology, we would say that the data description is \
at." There are many times when
clusters have subclusters, however, as in biological taxonomy, where individuals are
grouped into species, speices into genera, genera into families, and so on. In fact,
this kind of hierarchical clustering permeates classifactory activities in the sciences.
Thus we now turn to clustering methods which will lead to representations that are
hierarchical, rather than 
at.
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Figure 11.18: A dendrogram for hierarchical clustering. The vertical axis represents
a generalized distance between groupings.

11.10.1 De�nitions

Let us consider a sequence of partitions of the n samples into c clusters. The �rst of
these is a partition into n clusters, each cluster containing exactly one sample. The
next is a partition into n� 1 clusters, the next a partition into n� 2, and so on until
the nth, in which all the samples form one cluster. We shall say that we are at level
k in the sequence when c = n� k + 1. Thus, level one corresponds to n clusters and
level n to one cluster. Given any two samples x and x0, at some level they will be
grouped together in the same cluster. If the sequence has the property that whenever
two samples are in the same cluster at level k they remain together at all higher levels,
then the sequence is said to be a hierarchical clustering.

The most natural representation of hierarchical clustering is a corresponding tree,
called a dendrogram, that shows how the samples are grouped. Figure 11.18 showsdendro-

gram a dendrogram for a hypothetical problem involving six samples. Level 1 shows the
six samples as singleton clusters. At level 2, samples x3 and x5 have been grouped
to form a cluster, and they stay together at all subsequent levels. If it is possible
to measure the similarity between clusters, then the dendrogram is usually drawn to
scale to show the similarity between the clusters that are grouped.� In Fig. 11.18, for
example, the similarity between the two groups of samples that are merged at level 6
has a value of 30. The similarity values are often used to help determine whether the
groupings are natural or forced. For our hypothetical example, one would be inclined
to say that the groupings at levels 4 or 5 are natural, but that the large reduction in
similarity needed to go to level 6 makes that grouping forced. We shall see shortly
how such similarity values can be obtained.

Because of their conceptual simplicity, hierarchical clustering procedures are a-
mong the best-known methods. The procedures themselves can be divided into two
distinct classes | agglomerative and divisive. Agglomerative (bottom-up, clumping)Agglomer-

ative procedures start with n singleton clusters and form the sequence by successively merg-
ing clusters (as we saw). Divisive (top-down, splitting) procedures start with all ofdivisive

the samples in one cluster and form the sequence by successively splitting clusters.

� Another representation for hierarchical clustering is Venn diagrams, in which each level of cluster
may contain sets that are subclusters. However, it is more di�cult to represent quantitatively the
distances in such diagrams, and thus we concentrate on tree structures.
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The computation needed to go from one level to another is usually simpler for the ag-
glomerative procedures. However, when there are many samples and one is interested
in only a small number of clusters, this computation will have to be repeated many
times. For simplicity, we shall limit our attention to the agglomerative procedures,
referring the reader to the literature for divisive methods.

11.10.2 Agglomerative Hierarchical Clustering

The major steps in agglomerative clustering are contained in the following procedure:
Basic agglomerative clustering

Initialize c; ĉ = n;Hi = fxig; i = 1; . . . ; n c desired clusters
Do Find nearest clusters, e.g., Hi and Hj �nd candidate clusters
Merge Hi and Hj merge clusters
Let ĉ = ĉ� 1 decrement clusters

Until ĉ = c desired number found
End

As described, this procedure terminates when the speci�ed number of clusters has
been obtained. However, if we continue until c = 1 we can produce a dendrogram
like that shown in Fig. 11.18. At any level the \distance" between nearest clusters
can provide the dissimilarity value for that level. Note that we have not said how
to measure the distance between two clusters, and hence how to �nd the \nearest"
clusters at any stage. The considerations here are much like those involved in selecting
a criterion function. For simplicity, we shall generally restrict our attention to the
following distance measures:

dmin(Hi;Hj) = min
x2Hi

x02Hj

kx� x0k

dmax(Hi;Hj) = max
x2Hi

x02Hj

kx� x0k

davg(Hi;Hj) =
1

ninj

X
x2Hi

X
x02Hj

kx� x0k

dmean(Hi;Hj) = kmi �mjk: (65)

All of these measures have a minimum-variance 
avor, and they usually yield the
same results if the clusters are compact and well separated. However, if the clusters
are close to one another, or if their shapes are not basically hyperspherical, quite
di�erent results can be obtained. Below we shall use the two-dimensional point sets
shown in Fig. 11.19 to illustrate some of the di�erences.

But �rst let us consider the computational complexity of a particularly simple
agglomerative clustering algorithm. Suppose we have n patterns in d-dimensional
space, and we seek to form c clusters using dmin(Hi;Hj) de�ned in Eq. 65. We will,
once and for all, need to calculate n(n� 1) inter-point distances (each of which is an
O(d2) calculation) and place the results in an inter-point distance table. Our space
complexity is, then, O(n2). Finding the minimum distance pair (for the �rst merging)
requires that we step through the complete list, keeping the index of the smallest
distance. Thus for the �rst agglomerative step, the complexity is O(n(n�1)(d2+1)) =
O(n2d2).
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Figure 11.19: Three data sets, each of which responds di�erently to di�erent clustering
procedures (see text).

For an arbitrary agglomeration step (i.e., from ĉ to ĉ � 1), we need merely step
through the n(n�1)� ĉ \unused" distances in the list and �nd the smallest for which
x and x0 lie in di�erent clusters. This is, again, O(n(n � 1) � ĉ). If we assume the
typical conditions that n� c, the time complexity is thus O(cn2d2).�

The Nearest-Neighbor Algorithm

Consider the algorithm's behavior when dmin is used.� Suppose that we think of the
data points as being nodes of a graph, with edges forming a path between the nodes
in the same subset Hi. When dmin is used to measure the distance between subsets,
the nearest neighbors determine the nearest subsets. The merging of Hi and Hj

corresponds to adding an edge between the nearest pair of nodes in Hi and Hj . Since
edges linking clusters always go between distinct clusters, the resulting graph never
has any closed loops or circuits; in the terminology of graph theory, this procedure
generates a tree. If it is allowed to continue until all of the subsets are linked, the result
is a spanning tree | a tree with a path from any node to any other node. Moreover,spanning

tree it can be shown that the sum of the edge lengths of the resulting tree will not exceed
the sum of the edge lengths for any other spanning tree for that set of samples. Thus,
with the use of dmin as the distance measure, the agglomerative clustering procedure
becomes an algorithm for generating a minimal spanning tree.

Figure 11.20 shows the results of applying this procedure to the data of Fig. 11.19.
In all cases the procedure was stopped at c = 2; a minimal spanning tree can be
obtained by adding the shortest possible edge between the two clusters. In the �rst
case where the clusters are compact and well separated, the obvious clusters are found.
In the second case, the presence of a few points located so as to produce a bridge
between the clusters results in a rather unexpected grouping into one large, elongated
cluster, and one small, compact cluster. This behavior is often called the \chaining
e�ect," and is sometimes considered to be a defect of this distance measure. To the

� There are methods for sorting or arranging the entries in the inter-point distance table so as
to easily avoid inspection of points in the same cluster, but these typically do not improve the
complexity results signi�cantly.

� In the literature, the resulting procedure is often called the nearest-neighbor or the minimum

algorithm. If it is terminated when the distance between nearest clusters exceed an arbitrary
threshold, it is called the single-linkage algorithm.



11.10. HIERARCHICAL CLUSTERING 41

Figure 11.20: Results of the nearest-neighbor clustering algorithm.

extent that the results are very sensitive to noise or to slight changes in position of the
data points, this is certainly a valid criticism. However, as the third case illustrates,
this very tendency to form chains can be advantageous if the clusters are elongated
or possess elongated limbs.

The Farthest-Neighbor Algorithm

When dmax is used to measure the distance between subsets, the growth of elongated
clusters is discouraged.� Application of the procedure can be thought of as producing
a graph in which edges connect all of the nodes in a cluster. In the terminology of
graph theory, every cluster constitutes a complete subgraph. The distance between complete

subgraphtwo clusters is determined by the most distant nodes in the two clusters. When the
nearest clusters are merged, the graph is changed by adding edges between every
pair of nodes in the two clusters. If we de�ne the diameter of a cluster as the largest cluster

diameterdistance between points in the cluster, then the distance between two clusters is merely
the diameter of their union. If we de�ne the diameter of a partition as the largest
diameter for clusters in the partition, then each iteration increases the diameter of
the partition as little as possible. As Fig. 11.21 illustrates, this is advantageous when
the true clusters are compact and roughly equal in size. However, when this is not
the case | as happens with the two elongated clusters | the resulting groupings can
be meaningless. This is another example of imposing structure on data rather than
�nding structure in it.

Compromises

The minimum and maximum measures represent two extremes in measuring the dis-
tance between clusters. Like all procedures that involve minima or maxima, they tend
to be overly sensitive to \outliers" or \wildshots." The use of averaging is an obvious
way to ameliorate these problems, and davg and dmean are natural compromises be-
tween dmin and dmax. Computationally, dmean is the simplest of all of these measures,
since the others require computing all ninj pairs of distances kx � x0k. However, a

� In the literature, the resulting procedure is often called the farthest-neighbor or the maximum

algorithm. If it is terminated when the distance between nearest clusters exceeds an arbitrary
threshold, it is called the complete-linkage algorithm.
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Figure 11.21: Results of the farthest-neighbor clustering algorithm.

measure such as davg can be used when the distances kx�x0k are replaced by similari-
ty measures, where the similarity between mean vectors may be di�cult or impossible
to de�ne.

11.10.3 Stepwise-Optimal Hierarchical Clustering

We observed earlier that if clusters are grown by merging the nearest pair of clusters,
then the results have a minimum variance 
avor. However, when the measure of
distance between clusters is chosen arbitrarily, one can rarely assert that the resulting
partition extremizes any particular criterion function. In e�ect, hierarchical clustering
de�nes a cluster as whatever results from applying the clustering procedure. However,
with a simple modi�cation it is possible to obtain a stepwise-optimal procedure for
extremizing a criterion function. This is done merely by replacing one step of the
Basic Agglomerative Clustering Procedure (Sect. ??) to get:

Stepwise optimal hierarchical clustering

Initialize c; ĉ = n;Hi = fxig; i = 1; . . . ; n c desired clusters
Do Find clusters Hi and Hj

whose merger would increase

or decrease the criterion

as little as possible �nd candidate clusters
Merge Hi and Hj Merge clusters
Let ĉ = ĉ� 1 decrement clusters

Until ĉ = c desired number found
End

We saw earlier that the use of dmax causes the smallest possible stepwise increase
in the diameter of the partition. Another simple example is provided by the sum-
of-squared-error criterion function Je. By an analysis very similar to that used in
Sect. ??, we �nd that the pair of clusters whose merger increases Je as little as
possible is the pair for which the \distance"

de(Hi;Hj) =

r
ninj

ni + nj
kmi �mjk (66)

is minimum. Thus, in selecting clusters to be merged, this criterion takes into account
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the number of samples in each cluster as well as the distance between clusters. In
general, the use of de tends to favor growth by adding singletons or small clusters
to large clusters over merging medium-sized clusters. While the �nal partition may
not minimize Je, it usually provides a very good starting point for further iterative
optimization.

11.10.4 Hierarchical Clustering and Induced Metrics

Suppose that we are unable to supply a metric for our data, but that we can measure
a dissimilarity value �(x;x0) for every pair of samples, where �(x;x0) � 0, equality dissimil-

arityholding if an only if x = x0. Then agglomerative clustering can still be used, with the
understanding that the nearest pair of clusters is the least dissimilar pair. Interestingly
enough, if we de�ne the dissimilarity between two clusters by

�min(Hi;Hj) = min
x2Hi

x02Hj

�(x;x0) (67)

or

�max(Hi;Hj) = max
x2Hi

x02Hj

�(x;x0) (68)

then the hierarchical clustering procedure will induce a distance function for the given
set of n samples. Furthermore, the ranking of the distances between samples will be
invariant to any monotonic transformation of the dissimilarity values (Problem 25).

We can now de�ne the distance d(x;x0) between x and x0 as the value of the lowest
level clustering for which x and x0 are in the same cluster. To show that this is a
legitimate distance function, or metric, we need to show three things: metric

1. d(x;x0) = 0, x = x0 uniqueness
2. d(x;x0) = d(x0;x) symmetry
3. d(x;x00) � d(x;x0) + d(x0;x00) triangle inequality

It is easy to see that these requirements are satis�ed and hence that dissimilarity
can induce a metric (Problem ??). For our formula for dissimilarity, we have moreover
that

d(x;x00) � max[d(x;x0); d(x0;x00)] for any x0 (69)

in which case we say that d(�; �) is an ultrametric (Problem 16). Ultrametric criteria ultra-

metriccan be more immune to local minima problems since stricter ordering of distances
among clusters is maintained.

11.11 Graph Theoretic Methods

In two or three instances we have used linear graphs to add insight into the nature
of certain clustering procedures. Where the mathematics of normal mixtures and
minimum-variance partitions seems to keep returning us to the picture of clusters
as isolated clumps of points, the language and concepts of graph theory lead us to
consider much more intricate structures. Unfortunately, there is no uniform way of
posing clustering problems as problems in graph theory. Thus, the e�ective use of
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these ideas is still largely an art, and the reader who wants to explore the possibilities
should be prepared to be creative.

We begin our brief look into graph-theoretic methods by reconsidering the simple
procedures that produce the graphs shown in Fig. 11.9. Here a threshold distance
d0 was selected, and two points were said to be in the same cluster if the distance
between them was less than d0. This procedure can easily be generalized to apply to
arbitrary similarity measures. Suppose that we pick a threshold value s0 and say that
x is similar to x0 if s(x;x0) > s0. This de�nes an n-by-n similarity matrix S = [sij ],similarity

matrix where

sij =

�
1 if s(xi;xj) > s0
0 otherwise:

(70)

This matrix de�nes a similarity graph, dual to S, in which nodes correspond to pointssimilarity

graph and an edge joins node i and node j if and only if sij = 1.

The clusterings produced by the single-linkage algorithm and by a modi�ed version
of the complete-linkage algorithm are readily described in terms of this graph. With
the single-linkage algorithm, two samples x and x0 are in the same cluster if and only
if there exists a chain x;x1;x2; :::;xk;x

0 such that x is similar to x1, x1 is similar to
x2, and so on for the whole chain. Thus, this clustering corresponds to the connected
components of the similarity graph. With the complete-linkage algorithm, all samplesconnected

component in a given cluster must be similar to one another, and no sample can be in more than
one cluster. If we drop this second requirement, then this clustering corresponds to
the maximal complete subgraphs of the similarity graph | the \largest" subgraphsmaximal

complete

subgraph

with edges joining all pairs of nodes. (In general, the clusters of the complete-linkage
algorithm will be found among the maximal complete subgraphs, but they cannot be
determined without knowing the unquantized similarity values.)

In the preceding section we noted that the nearest-neighbor algorithm could be
viewed as an algorithm for �nding a minimal spanning tree. Conversely, given a
minimal spanning tree we can �nd the clusterings produced by the nearest-neighbor
algorithm. Removal of the longest edge produces the two-cluster grouping, removal of
the next longest edge produces the three-cluster grouping, and so on. This amounts
to an inverted way of obtaining a divisive hierarchical procedure, and suggests other
ways of dividing the graph into subgraphs. For example, in selecting an edge to
remove, we can compare its length to the lengths of other edges incident upon its
nodes. Let us say that an edge is inconsistent if its length l is signi�cantly larger thanincon-

sistent

edge

�l, the average length of all other edges incident on its nodes. Figure 11.22 shows a
minimal spanning tree for a two-dimensional point set and the clusters obtained by
systematically removing all edges for which l > 2�l. Note how the sensitivity of this
criterion to local conditions gives results that are quite di�erent from merely removing
the two longest edges.

When the data points are strung out in to long chains, a minimal spanning tree
forms a natural skeleton for the chain. If we de�ne the diameter path as the longestdiameter

path path through the tree, then a chain will be characterized by the shallow depth of
branching o� the diameter path. In contrast, for a large, uniform cloud of data
points, the tree will usually not have an obvious diameter path, but rather several
distinct, near-diameter paths. For any of these, an appreciable number of nodes will
be o� the path. While slight changes in the locations of the data points can cause
major rerouting of a minimal spanning tree, they typically have little e�ect on such
statistics.
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Figure 11.22: Clusters formed by removing inconsistent edges. a) Point set. b)
Minimal spanning tree. c) Clusters.

Figure 11.23: A minimal spanning tree with bimodal edge length distribution.

One of the useful statistics that can be obtained from a minimal spanning tree is
the edge length distribution. Figure 11.23 shows a situation in which a dense cluster
is embedded in a sparse one. The lengths of the edges of the minimal spanning tree
exhibit two distinct clusters which would easily be detected by a minimum-variance
procedure. By deleting all edges longer than some intermediate value, we can extract
the dense cluster as the largest connected component of the remaining graph. While
more complicated con�gurations can not be disposed of this easily, the 
exibility of the
graph-theoretic approach suggests that it is applicable to a wide variety of clustering
problems.

11.12 The Problem of Validity

With almost all of the procedures we have considered thus far we have assumed
that the number of clusters is known. That is a reasonable assumption if we are
upgrading a classi�er that has been designed on a small sample set, or if we are
tracking slowly time-varying patterns. However, it may be an unjusti�ed assumption
if we are exploring an essentially unknown set of data. Thus, a constantly recurring
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problem in cluster analysis is that of deciding just how many clusters are present.

When clustering is done by extremizing a criterion function, a common approach
is to repeat the clustering procedure for c = 1, c = 2, c = 3, etc., and to see how the
criterion function changes with c. For example, it is clear that the sum-of-squared-
error criterion Je must decrease monotonically with c, since the squared error can be
reduced each time c is increased merely by transferring a single sample to the new
cluster. If the n samples are really grouped into ĉ compact, well separated clusters,
one would expect to see Je decrease rapidly until c = ĉ, decreasing much more slowly
thereafter until it reaches zero at c = n. Similar arguments have been advanced for
hierarchical clustering procedures and can be apparent in a dendrogram, the usual
assumption being that large disparities in the levels at which clusters merge indicate
the presence of natural groupings.

A more formal apprach to this problem is to devise some measure of goodness of
�t that expresses how well a given c-cluster description matches the data. The chi-
squared and Kolmogorov-Smirnov statistics are the traditional measures of goodness
of �t, but the curse of dimensionality usually demands the use of simpler measures,
such as a criterion function J(c). Since we expect a description in terms of c + 1
clusters to give a better �t than a description in terms of c clusters, we would like to
know what constitutes a statistically signi�cant improvement in J(c).

A formal way to proceed is to advance the null hypothesis that there are exactly
c clusters present, and to compute the sampling distribution for J(c + 1) under this
hypothesis. This distribution tells us what kind of apparent improvement to expect
when a c-cluster description is actually correct. The decision procedure would be
to accept the null hypothesis if the observed value of J(c + 1) falls within limits
corresponding to an acceptable probability of false rejection.

Unfortunately, it is usually very di�cult to do anything more than crudely estimate
the sampling distribution of J(c + 1). The resulting solutions are not above suspi-
cion, and the statistical problem of testing cluster validity is still essentially unsolved.
However, under the assumption that a suspicious test is better than none, we include
the following approximate analysis for the simple sub-of-squared-error criterion.

Suppose that we have a set H of n samples and we want to decide whether or not
there is any justi�cation for assuming that they form more than one cluster. Let us
advance the null hypothesis that all n samples come from a normal population with
mean � and covariance matrix �2I.� If this hypothesis were true, any clusters found
would have to have been formed by chance, and any observed decrease in the sum of
squared error obtained by clustering would have no signi�cance.

The sum of squared error Je(1) is a random variable, since it depends on the
particular set of samples:

Je(1) =
X
x2H

kx�mk2; (71)

where m is the mean of the n samples. Under the null hypothesis, the distribution
for Je(1) is approximately normal with mean nd�2 and variance 2nd�4.

Suppose now that we partition the set of samples into two subsets H1 and H2 so
as to minimize Je(2), where

� We could of course assume a di�erent cluster form, but in the absense of further information, the
Gaussian can be justi�ed on the grounds we have seen before.
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Je(2) =
2X

i=1

X
x2H

kx�mik2; (72)

mi being the mean of the samples inHi. Under the null hypothesis, this partitioning is
spurious, but it nevertheless results in a value for Je(2) that is smaller than Je(1). If we
knew the sampling distribution for Je(2), we could determine how small Je(2) would
have to be before we were forced to abandon a one-cluster null hypothesis. Lacking an
analytical solution for the optimal partitioning, we cannot derive an exact solution for
the sampling distribution. However, we can obtain a rough estimate by considering the
suboptimal partition provided by a hyperplane through the sample mean. For large
n, it can be shown that the sum of squared error for this partition is approximately
normal with mean n(d� 2=�)�2 and variance 2n(d� 8=�2)�4 (Problem 23).

This result agrees with out statement that Je(2) is smaller than Je(1), since the
mean of Je(2) for the suboptimal partition | n(d� 2=�)�2 | is less than the mean
for Je(1) | nd�2. To be considered signi�cant, the reduction in the sum of squared
error must certainly be greater than this. We can obtain an approximate critical value
for Je(2) by assuming that the suboptimal partition is nearly optimal, by using the
normal approximation for the sampling distribution, and by estimating �2 by

�̂2 =
1

nd

X
x2H

kx�mk2 = 1

nd
Je(1): (73)

The �nal result can be stated as follows (Problem 26): Reject the null hypothesis at
the p-percent signi�cance level if

Je(2)

Je(1)
< 1� 2

�d
� �

r
2(1� 8=�2d)

nd
; (74)

where � is determined by

p = 100

Z 1

�

1

2�
e�u

2=2 du = 100(1� erf(�)); (75)

where erf(�) is the standard error function. This provides us with a test for deciding error

functionwhether or not the splitting of a cluster is justi�ed. Clearly the c-cluster problem can
be treated by applying the same test to all clusters found.

11.13 Leader-follower clustering

Whereas clustering algorithms such as K-means and hierarchical clustering typically
have all data present before clustering begins (i.e., are o�-line), there are occasionally
situations in which clustering must be performed on-line as the data streams in, for
instance when there is inadequate memory to store all the patterns themselves, or in
a time-critical situation where the clusters need to be used even before the full data is
present. Our graph theoretic methods can be perfomred on-line | one merely links
the new pattrn to an existing cluster baseed on some similarity measure.

In order to make on-line versions of methods suc as K-means, we will have to be a
bit more careful. Under these conditions, the best approach generally is to represent
clusters by their \centers" (e.g., means) and update these centers based soley on its
current value and the incoming pattern. Here we shall assume that the number of
clusters is known, and return in Sect. ?? to the case where it is not known.
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Figure 11.24: Leader-follower clustering adjusts cluster centers on-line, in response to
unlabelled patterns.

Suppose we currently have c cluster centers; they may have been placed initially
at random positions, or as the �rst c patterns presented, or the current state after any
number of patterns have been presented. The simplest approach is to alter only the
cluster center most similar to a new pattern being presented, and the cluster center
is changed to be somewhat more like the pattern (Fig. 11.24).

If we let wi represent the current center for cluster i, our Basic leader-follower

clustering algorithm is then:

Basic leader-follower clustering

Initialize c cluster centers, rate � initialize
For each input pattern x new patterns
Find nearest center, e.g., wi �nd nearest cluster
wi = wi + �x update nearest center
normalized weights normalized weights

Next pattern next pattern
End

Before we analyze some drawbacks of such a leader-follower clustering algorithm,
let us consider one popular neural technique for achieving it.

11.13.1 Competitive Learning

Competitive learning uses a network structurally quite similar to a two-layer per-
ceptron in order to perform leader-follower clustering. Each of the output neurons
represents a di�erent cluster center, and its input weights represent the cluster center,
i.e., the pattern that maximally excites the unit.

When a new pattern is presented, each of the output units computes its net ac-
tivation, wtx. Only the most active neuron (i.e., the closest to the new pattern) is
permitted to update its weights by the simple formula:�

w(t+ 1) = w(t) + �x; (76)

� We note that a winner-take-all networks can be used to insure that only the most active unit will
learn.
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Figure 11.25: Competitive learning (on-line clustering). All patterns have been nor-

malized
Pd

i=1 xi = 1, and hence lie on a hypersphere. Likewise, the weights of the
three cluster centers have been normalized.

followed by an overall weight normalization (
Pd

i=0 wi = 1); this normalization is
needed to keep the classi�cation based on direction (i.e., position in feature space)
rather than overall magnitude of w. Figure 11.25 shows the trajectories of three
cluster centers in response to a sequence of patterns chosen randomly from the set
shown.

The above algorithm, however, can ocassionally present a problem, regardless
of whether it is implemented via competitive learning. Consider a cluster w1 that
originally codes a particular pattern x0, i.e., if x0 is presented, the output node having
weights w1 is most activated. Suppose a \hostile" sequence of patterns is presented,
i.e., one that sweeps the cluster centers in unusual ways (Fig. 11.26). It is possible
that after the cluster centers have been swept, that x0 is coded by w2. Indeed, a
particularly devious sequence can lead x0 to be coded by an arbitrary sequence of
cluster centers, with any cluster center being active an arbitrary number of times.

In short, in a non-stationary environment, a we may want our clustering algorithm
to be stable to prevent ceaseless recoding, and yet plastic, or changable, in response
to a new pattern. (Freezing cluster centers would prevent recoding, but would not
permit learning of new patterns.) This tradeo� has been called the stability-plasticity
dilemma, and we shall soon see how it can be overcome. First, however, we turn to stability-

plasticitythe problem of unknown number of clusters.

11.13.2 Unknown number of clusters

We have assumed that the number of cluster centers is known. If we do not know the
number of cluster centers, we need some criterion for the creation of new centers. (One
can also have cluster deletion, but this is rarely used.) The simplest and most natural
method is to create a new cluster center if a pattern being presented is \su�ciently
di�erent" from any of the existing clusters.
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Figure 11.26: Instability can arise when a pattern is assigned di�erent cluster mem-
berships at di�erent times. Early in clustering the pattern marked x� lies in the black
cluster, while later in clustering it lies in the red cluster. Similar pattern presentations
can make x� alternate arbitrarily between clusters.

On-line clustering with cluster creation

Initialize cluster centers, � initialize
Input pattern x(t) step through patterns randomly
Find closest cluster center, e.g., wi �nd closest cluster center
If d(x;wi) � � close enough?
Update cluster center move cluster center

Else create new center wj = x(t) new center
Next pattern

End

11.13.3 Adaptive Resonance

The simplest adaptive resonance networks (or Adaptive Resonance Theory or ART
networks) perform a modi�cation of the On-line clustering with cluster creation

procedure we have just seen. While the primary motivation for ART was to explain
biological learning, we shall not be concerned here with their biological relevance nor
with their use in supervised learning (but see Problem 33).

It is simplest to consider an ART as an elaboration upon competitive learning
networks (Fig. 11.27). An ART system takes the competitive learning network and
adds top-down modi�able weights. This comprises the attentional system. To thisattentional

system is added an orienting subsystem, whose function is to detect novelty (i.e., if a new
orienting

system

pattern is su�ciently di�erent from an existing cluster).

The network works as follows. First a pattern is presented to the input units. This
leads via bottom-up connections wij to activations in the output units. A winner-
take-all computation leads to only the most activated ouput unit being active | all
other output units are suppressed. Activation is then sent back to the input units
via weights wji. This leads, in turn to a modi�cation of the activation of the input
units. Very quickly, a stable con�guration of output and input units occurs, called
a \resonance"(though this has nothing to do with the type of resonance in a driven
oscillator).
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Figure 11.27: Adaptive Resonance network (ART1 for binary patterns). Weights
are bidirectional, gain, the orienting system controls the , and hence (indirectly) the
number of clusters found.

ART networks detect novelty by means of the orienting subsystem. The details
need not concern us here, but in broad overview, the orienting subsystem has two
inputs: the total number of active input features and the total number of features
that are active in the input layer. (Note that these two numbers need not be the
same, since the top-down feedback a�ects the activation of the input units, but not
the number of active inputs themselves.) If an input pattern is \too di�erent" from
any current cluster centers, then the orienting subsystem sends a reset wave signal
that renders the active output unit quiet. This allows a new cluster center to be
found, or if all have been explored, then a new cluster center is created.

The criterion for \too di�erent" is a single number, set by the user, called the
vigilance, �(0 � � � 1. Denoting the number of active input features as jI j and the vigilance

number active in the input layer during a resonance as jRj, then there will be a reset
if

jRj
jI j < �; (77)

where rho is a user-set number called the vigilance parameter. A low vigilance parme- vigilance

parameterter means that there can be a poor \match" between the input and the learned cluster
and the network will accept it. (Thus vigilance and the ratio of the number of fea-
tures used by ART, while motivated by proportional considerations, is just one of an
in�nite number of possible closeness criteria (related to �). For the same data set, a
low vigilance leads to a small number of large coarse clusters being formed, while a
high vigilance leads to a large number of �ne clusters (Fig. 11.28).

We have presented the basic approach and issues with ART1, but these return
(though in a more subtle way) in analog versions of ART in the literature.

11.14 Low-Dimensional Representations and Mul-

tidimensional Scaling

Part of the problem of deciding whether or not a given clustering means anything
stems from our inability to visualize the structure of multidimensional data. This



52 CHAPTER 11. UNSUPERVISED LEARNING AND CLUSTERING

Figure 11.28: The results of ART1 applied to a sequence of binary �gures. a) � = xx.
b) � = 0:xx.

problem is further aggravated when similarity or dissimilarity measures are used that
lack the familiar properties of distance. One way to attack this problem is to try to
represent the data points as points in some lower-dimensional space in such a way
that the distances between points in the that space correspond to the dissimilarities
between points in the original space. If acceptably accurate representations can be
found in two or perhaps three dimensions, this can be an extremely valuable way to
gain insight into the structure of the data. The general process of �nding a con�gura-
tion of points whose interpoint distances correspond to similarities or dissimilarities
is often called multidimensional scaling.

Let us begin with the simpler case where it is meaningful to talk about the dis-
tances between the n samples x1; :::;xn. Let yi be the lower-dimensional image of
xi, �ij be the distance between xi and xj , and dij be the distance between yi and
yj (Fig. 11.29). Then we are looking for a con�guration of image points y1; :::;yn
for which the n(n � 1)=2 distances dij between image points are as close as possi-
ble to the corresponding original distances �ij . Since it will usually not be possible
to �nd a con�guration for which dij = �ij for all i and j, we need some criterion
for deciding whether or not one con�guration is better than another. The following
sum-of-squared-error functions are all reasonable candidates:

Jee =

P
i<j

(dij � �ij)
2

P
i<j

�2ij
(78)

Jff =
X
i<j

�dij � �ij
�ij

�2
(79)

Jef =
1P

i<j
�ij

X
i<j

(dij � �ij)
2

�ij
: (80)

Since these criterion functions involve only the distances between points, they are
invariant to rigid-body motions of the con�gurations. Moreover, they have all been
normalized so that their minimum values are invariant to dilations of the sample
points. While Jee emphasizes the largest errors (regardless whether the distances �ij



11.14. LOW-DIMENSIONAL REPRESENTATIONS ANDMULTIDIMENSIONAL SCALING53

Figure 11.29: The distance between points in the original space are �ij while in the
projected space dij .

are large or small), Jff emphasizes the largest fractional errors (regardless whether
the errors jdij��ij j are large or small). A useful compromise is Jef , which emphasizes
the largest product of error and fractional error.

Once a criterion function has been selected, an optimal con�guration y1; :::;yn
is de�ned as one that minimizes that criterion function. An optimal con�guration
can be sought by a standard gradient-descent procedure, starting with some initial
con�guration and changing the yi's in the direction of greatest rate of decrease in the
criterion function. Since

dij = kyi � yjk;
the gradient of dij with respect to yi is merely a unit vector in the direction of yi�yj .
Thus, the gradients of the criterion functions are easy to compute:

rykJee =
2P

i<j
�2ij

X
j 6=k

(dkj � �kj)
yk � yj
dkj

rykJff = 2
X
j 6=k

dkj � �kj
�2kj

yk � yj
dkj

rykJef =
2P

i<j
�ij

X
j 6=k

dkj � �kj
�kj

yk � yj
dkj

:

The starting con�guration can be chosen randomly, or in any convenient way that
spreads the image points about. If the image points lie in a d̂-dimensional space,
then a simple and e�ective starting con�guration can be found by selecting those d̂
coordinates of the samples that have the largest variance.

The following example illustrates the kind of results that can be obtained by these
techniques. The data consist of thirty points spaced at unit intervals along a three-
dimensional spiral cone:

x1(k) = k cos(x3)
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Figure 11.30: A two-dimensional representation of data points in three dimensions.

x2(k) = k sin(x3)

x3(k) = k; k = 0; 1; :::; 29:

Figure 11.30a) shows a perspective representation of the three-dimensional data.
When the Jef criterion was used, twenty iterations of a gradient descent procedure
produced the two-dimensional con�guration shown in Fig. 11.30b). Of course, transla-
tions, rotations, and re
ections of this con�guration would be equally good solutions.

In non-metric multidimensional scaling problems, the quantities �ij are dissimi-
larities whose numerical values are not as important as their rank order. An ideal
con�guration would be one for which the rank order of the distances dij is the same as
the rank order of the dissimilarities �ij . Let us order them = n(n�1)=2 dissimilarities
so that �i1j1 � � � � � �imjm , and let d̂ij be any m numbers satisfying the monotonicity

constraintmono-

tonicity

constrain-

t

d̂i1j1 � d̂i2j2 � � � � � d̂imjm : (81)

In general, the distances dij will not satisfy this constraint, and the numbers d̂ij
will not be distances. However, the degree to which the dij satisfy this constraint is
measured by

Ĵmon = min
d̂ij

X
i<j

(dij � d̂ij)
2; (82)

where it is always to be understood that the d̂ij must satisfy the monotonicity con-

straint. Thus, Ĵmon measures the degree to which the con�guration of points y1; :::;yn
represents the original data. Unfortunately, Ĵmon can not be used to de�ne an optimal
con�guration because it can be made to vanish by collapsing the con�guration to a
single point. However, this defect is easily removed by a normalization such as the
following:

Jmon =
ĴmonP
i<j

d2ij
: (83)

Thus, Jmon is invariant to translations, rotations, and dilations of the con�gura-
tion, and an optimal con�guration can be de�ned as one that minimizes this criterion
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Figure 11.31: Multidimensional scaling of the data in the table. a) A representation
in two dimensions. b) A representation in three dimensions.

function. It has been observed experimentally that when the number of points is
larger than dimensionality of the image space, the monotonicity constraint is actually
quite con�ning. This might be expected from the fact that the number of constraints
grows as the square of the number of points, and it is the basis for the frequently
encountered statement that this procedure allows the revcovery of metric information
from nonmetric data. The quality of the representation generally improves as the
dimensionality of the image space is increased, and it may be necessary to go beyond
three dimensions to obtain an acceptably small value of Jmon. However, this may be
a small price to pay to allow the use of the many clustering procedures available for
data points in metric spaces.

A more typical use of multidimensional scaling occurs when one has complicat-
ed or noisy similarity information, and one seeks to represent it in a way that will
illuminate the similarities and di�erences among elements. For instance, Table ??
shows perceptual confusions among spoken phonemes, and it is natural to represent
two phonemes as categorically \close" if they are highly confused. Figure 11.31 shows
the results of a simple multi-dimensional scaling algorithm on the data in the table.

kdjf kjdf kjdf kdjf kjdf kjdf
kdjf 0.xxx 0.xxx 0.xxx 0.xxx 0.xxx
kdjf 0.xxx 0.xxx 0.xxx 0.xxx 0.xxx
kdjf 0.xxx 0.xxx 0.xxx 0.xxx 0.xxx
kdjf 0.xxx 0.xxx 0.xxx 0.xxx 0.xxx
kdjf 0.xxx 0.xxx 0.xxx 0.xxx 0.xxx

11.14.1 Self-organizing feature maps

A method closely related to multidimensional scaling is that of self-organizing feature
maps (or topologically ordered maps, or Kohonen self-organizing feature maps). The Kohonen

mapsbasic goal is to represent feature vectors that are somehow close together in one space
as begin close together in a constructed space (of typically lower intrinsic dimension).

It is simplest to explain self-organizing maps by means of an example. Suppose
we seek to learn a mapping from a circular disk region (the source space) to a target
space, here chosen to be a square. The source space is sensed by a two-joint arm of
�xed segment lengths, and thus each point y1 � y2 leads to a pair of angles �1 � �2
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Figure 11.32: Self-organizing feature map a) application and b) network. Here, points
will be sampled from the input space uniformly. However, because of the non-linearity
of the joint system, the signals along the line x will not be uniform.

(vector �), which are related to them by inverse trigonometric functions.

Our goal is this: given only a sequence of �'s (corresponding to points sampled in
the source space), create a mapping from � to x such that points neighboring in the
souce space map to points that are neighboring in the target space. Note especially
that we will not need to know the particular nonlinear mapping from y to �. It is
this goal of preserving neighborhoods that leads us to call the method \topologically
correct mapping."

The network is fully connected, with modi�able weights (Fig. 11.32). When a
pattern �, each node in the target space computes its net activation, netk =

P
i �iwki.

One of the units is most activated; we call it x�. The weights to this unit and those
in its immediate neighborhood are updated according to:

wki(t+ 1) / wki(t) + �(t)�(x� x�)�i; (84)

and then followed by an overall normalization such that jwj = 1 for weights at each
target unit. The function �(x� x�) is called the \window function," and is typicallywindow

function 1.0 for x = x� and smaller for large values of jx = x�j (Fig. 11.33). The learning rate
�(t) typically decreases slowly as patterns are presented to insure that learning will
ultimately stop.

The e�ect of Eq. 84 is that after su�ciently many patterns have been presented,
neighboring points in the source space lead to neighboring points in the target space,
as can be seen in Fig. ?? | we have learned a topologically correct map. Note in
particular that we have no direct access to the source space.

Equation 84 has a particularly straightforward interpretation. For each pattern
presentation, the \winning" unit in the target space (w�) is adjusted so that it is more
like the particular pattern. Others in the neighborhood of w� are also adjusted so
that their weights more nearly match that of the input pattern (though not quite as
much as for w�, according to the window function). In this way, neighboring points
in the input space lead to neighboring points being active. Figure 11.34 shows an
example.

There are inherent ambiguities in the mapping, but these are generally irrelevant.
For instance, even if all learning goes well, a mapping from a square to a square could
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Figure 11.33: Typical window functions for self-organizing maps for target spaces in
a) two dimensions and b) one dimension.

Figure 11.34: The source space and the square grid of the output space. Each point in
the circle leads to a particular unit in the target space being active. a) Initial random
weights. b) After 1000 pattern presentations. c) 10,000 presentations. d) 100,000
presentations.
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Figure 11.35: The circular source space and the line of the output space. a) Initial
random weights. b) After 1000 pattern presentations. c) 10,000 presentations. d)
100,000 presentations.

Figure 11.36: Some initial (random) weights and the particular sequence of patterns
(randomly chosen) will lead to kinks in the mapping.

8 possible orientations (for each of the 90o rotations and 
ips). But this ambiguity
can lead to a more signi�cant drawback | \kinks" in the map. A particular initial
condition can lead to part of the map choosing one of the con�curations, while a
di�erent part chooses another one (Fig. 11.36). When this occurs, it is generally best
to restart the learning from the beginning, with perhaps a wider window function or
slower (which tends to increase the contribution of global constraints).

Another point is the number of dimensions in the target space. One typically
chooses this dimension (and geometry) based on knowledge of the problem or on the
use to which the system will be put. For instance, in forming a self-organized map from
sounds for vowel recognition, a two-dimensional target space would be appropriate,
since it is known that two dimensions su�ce.

Such self-organizing feature maps can be used in a number of systems. For in-
stance, one can take a fairly large number (e.g., 12) of temporal frequency �lter
outputs and use their output to map to a two-dimensional target space. When such
an approach is applied to spoken vowel sounds, similar utterances such as /ee/ and
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/eh/ will be close together, while others, e.g., /ee/ and /oo/, will be far apart |
just as we had in multidimensional scaling. Subsequent supervised learning can label
regions in this target space, and thus lead to a full classi�er, but one formed using
only a small amount of supervised training.

11.15 Clustering and Dimensionality Reduction

Because the curse of dimensionality plagues so many pattern recognition procedures,
a variety of methods for dimensionality reduction have been proposed. Unlike the
procedures that we have just examined, most of these methods provide a functional
mapping, so that one can determine the image of an arbitrary feature vector. The
classical procedures of statistics are principal components analysis and factor analysis, principal

compo-

nents

factor

analysis

both of which reduce dimensionality by forming linear combinations of the features.
The object of principal components analysis (known in communication theory as the
Karhunen-Lo�eve expansion) is to �nd a lower-dimensional representation that ac-
counts for the variance of the features. The object of factor analysis is to �nd a
lower-dimensional representation that accounts for the correlations among the fea-
tures. If we think of the problem as one of removing or combining (i.e., grouping)
highly correlated features, then it becomes clear that the techniques of clustering are
applicable to this problem. In terms of the data matrix, whose n rows are the d- data

matrixdimensional samples, ordinary clustering can be thought of as a grouping of the rows,
with a smaller number of cluster centers being used to represent the data, whereas di-
mensionality reduction can be thought of as a grouping of the columns, with combined
features being used to represent the data.

Let us consider a simple modi�cation of hierarchical clustering to reduce dimen-
sionality. In place of an n-by-n matrix of distances between samples, we consider a
d-by-d correlation matrix R = [�ij ], where the correlation coe�cient �ij is related to correla-

tion

matrix

the covariances (or sample covariances) by

�ij =
�ijp
�ii�jj

: (85)

Since 0 � �2ij � 1, with �2ij = 0 for uncorrelated features and �2ij = 1 for completely

correlated features, �2ij plays the role of a similarity function for features. Two features

for which �2ij is large are clearly good candidates to be merged into one feature, thereby
reducing the dimensionality by one. Repetition of this process leads to the following
hierarchical procedure:

Hierarchical dimensionality reduction

Initialize d̂ = d;Fi = fxig; i = 1; . . . ; d initialize

Do If d̂ = d0 stop
ElseCompute corr Compute corr
Find most correlated pair of ???
distinct clusters, e.g., Fi and Fj ???

Append Fj to Fi and delete Fj
Decrement d̂ by 1 decrement

End

Probably the simplest way to merge two groups of features is just to average them.
(This tacitly assumes that the features have been scaled so that their numerical ranges
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are comparable.) With this de�nition of a new feature, there is no problem in de�ning
the correlation matrix for groups of features. It is not hard to think of variations on
this general theme, but we shall not pursue this topic further.

For the purposes of pattern classi�cation, the most serious criticism of all of the
approaches to dimensionality reduction that we have mentioned is that they are overly
concerned with faithful representation of the data. Greatest emphasis is usually placed
on those features or groups of features that have the greatest variability. But for
classi�cation, we are interested in discrimination | not representation. While it is a
truism that the ideal representation is the one that makes classi�cation easy, it is not
always so clear that clustering without explicitly incorporating classi�cation criteria
will �nd such a representation. Roughly speaking, the most interesting features are
the ones for which the di�erence in the class means is large relative to the standard
deviations, not the ones for which merely the standard deviations are large. In short,
we are interested in something more like the method of multiple discriminant analysis
described in Sect. ??.

There is a large body of theory on methods of dimensionality reduction for pattern
classi�cation. Some of these methods seek to form new features out of linear combi-
nations of old ones. Others seek merely a smaller subset of the original features. A
major problem confronting this theory is that the division of pattern recognition into
feature extraction followed by classi�cation is theoretically arti�cial. A completely
optimal feature extractor can never by anything but an optimal classi�er. It is only
when constraints are placed on the classi�er or limitations are placed on the size of
the set of samples that one can formulate nontrivial (or very complicated) problems.
Various ways of circumventing this problem that may be useful under the proper cir-
cumstances can be found in the literature, and we have included a few entry points
to this literature. When it is possible to exploit knowledge of the problem domain to
obtain more informative features, that is usually the most pro�table course of action.

Summary

Unsupervised learning or clustering consists of extracting information from unlabelled
samples. If the underlying distribution comes from a mixture model of known number
of components, and if we need only �nd parameters � for them, we can use Bayesian
or maximum likelihood methods. Since there are only ocassionally analytic solutions
to these problems, a number of greedy (locally step-wise optimal) iterative algorithms
can be used, such as K-means clustering.

If the problem represents a natural hierarchy of subclusters, hierarchical methods
are needed; the resulting cluster structure is revealed in a dendrogram. On-line clus-
tering leads to a di�erent set of compromises and leader-follower clusterers (which
adjust cluster centers based on their current value and the pattern presented), and
one particular version, Adaptive Resonance.

Unsupervised methods for feature selection and representation, such as multidi-
mensional scaling and self-organizing feature maps, lead to representations that might
illuminate data structure. If augmented by a small amount of supervised learning,
the results can be useful in pattern classi�cation.
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1. Suppose that x can assume the values 0; 1; :::;m and that P (xj�) is a mixture of
c binomial distributions

P (xj�) =
cX

j=1

�
m

x

�
�mj (1� �j)

m�xP (!j):

(a) Assuming that the a priori probabilities are known, explain why this mixture is
not identi�able if m < c.

(b) Is it completely unidenti�able?
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(c) How does this answer change if the a priori probabilities are also unknown?

2. Let x be a binary vector and P (xj�) be a mixture of c multivariate Bernoulli
distributions,

P (xj�) =
cX

i=1

P (xj!i;�i)P (!i)

where

P (xj!i;�i) =
dY

j=1

�
xj
ij (1� �ij)

1�xj :

(a) Show that

@ log P (xj!i;�i)
@�ij

=
xi � �ij

�ij(1� �ij)
:

(b) Using the general equations for maximum likelihood estimates, show that the

maximum likelihood estimate �̂i for �i must satisfy

�̂i =

nP
k=1

P̂ (!ijxk ; �̂i)xk
nP

k=1

P̂ (!ijxk; �̂i)
:

(c) Interpret your answer in words.

3. Let p(xj�) be a c-component normal mixture with p(xj!i;�i) � N(�i; �
2
i I). Using

the results of Sect. ??, show that the maximum likelihood estimate for �2i must satisfy

�̂2i =

1=d
nP

k=1

P̂ (!ijxk; �̂i)kxk � �̂ik2
mP
k=1

P̂ (!ijxk ; �̂i)
:

where �̂i and P̂ (!ijxk; �̂i) are given by Eqs. 17 & 19, respectively.
4. The derivation of the equations for maximum likelihood estimation of parameters
of a mixture density was made under the assumption that the parameters in each
component density are functionally independent. Suppose instead that

p(xj�) =
cX

j=1

p(xj!j ; �)P (!j);

where � is a parameter that appears in a number of the component densities. Let l
be the n-sample log-likelihood function, and show that
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@l

@�
=

nX
k=1

cX
j=1

P (!j jxk; �)@log p(xk j!j ; �)
@�

;

where

P (!j jxk ; �) = p(xkj!j ; �)P (!j)
p(xkj�) :

5. Let p(xj!i;�i) � N(�i;�), where � is a common covariance matrix for the c
component densities. Let �pq be the pqth element of �, �pq be the pqth element of
��1, xp(k) be the pth element of xk, and �p(i) be the pth element of �i.

(a) Show that

@log p(xkj!i;�i)
@�pq

=
�
1� �pq

2

��
�pq � (xp(k)� �p(i))(xq(k)� �q(i))

�
:

(b) Use this result and the results of Problem 4 to show that the maximum likelihood
estimate for � must satisfy

�̂ =
1

n

nX
k=1

xkx
t
k �

cX
i=1

P̂ (!i)�̂i�̂
t
i;

where P̂ (!i) and �̂i are the maximum likelihood estimates given by Eqs. 16 & 17.
6. Show that the maximum likelihood estimate of an a priori probability can be
zero by considering the following special case. Let p(xj!1) � N(0; 1) and p(xj!2) �
N(0; 1=2), so that P (!1) is the only unknown parameter in the mixture

p(x) =
P (!1)p

2�
e�x

2=2 +
(1� P (!1))p

�
e�x

2

:

(a) Show that the maximum likelihood estimate P̂ (!1) of P (!1) is zero if one sample
x1 is observed and if x21 < log 2.

(b) What is the value of P̂ (!1) if x
2
1 > log 2?

7. Consider the univariate normal mixture

p(xj�1; :::; �c) =
cX

j=1

P (!j)p
2��

exp
�� 1

2

�x� �j
�

�2�
in which all of the c components have the same, known variance, �2. Suppose that
the means are so far apart compared to � that for any observed x all but one of the
terms in this sum are negligible. Use a heuristic argument to show that the value of

max
�1;:::;�c

n 1
n
log p(x1; :::; xnj�1; :::; �c)

o
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ought to be approximately

cX
j=1

P (!j)log P (!j)� 1

2
log 2��e

when the number n of independently drawn samples is large (and e is the base of the
natural logarithms).
8. Let �1 and �2 be unknown parameters for the component densities p(xj!1; �1) and
p(xj!2; �2), respectively. Assume that �1 and �2 are initially statistically independent,
so that p(�1; �2) = p1(�1)p2(�2).

(a) Show that after one sample x1 from the mixture density is observed, p(�1; �2jx1)
can no longer be factored as

p(�1jx1)p2(�2jx1)

if

@p(xj!i; �i)
@�i

6= 0; i = 1; 2:

(b) What does this imply in general about the statistical dependence of parameters
in unsupervised learning?

9. Let x1; :::;xn be n d-dimensional samples and � be any non-singular d-by-d
matrix. Show that the vector x that minimizes

mX
k=1

(xk � x)t��1(xk � x)

is the sample mean, 1=n
Pn

k=1 xk .
10. Let s(x;x0) = xtx0=(kxk � kx0k).

(a) Interpret this similarity measure if the d features have binary values, where
xi = 1 if x possesses the ith feature and xi = �1 if it does not.

(b) Show that for this case

kx� x0k2 = 2d(1� s(x;x0)):

11. If a set of n samplesH is partitioned into c disjoint subsets H1; :::;Hc, the sample
mean mi for samples in Hi is unde�ned if Hi is empty. In such a case, the sum of
squared errors involves only the non-empty subsets:

Je =
X
Hi 6=;

X
x2Hi

kx�mik2:
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Assuming that n � c, show there are no empty subsets in a partition that minimizes
Je. Explain your answer in words.
12. Consider a set of n = 2k+1 samples, k of which coincide at x = �2, k at x = 0,
and one at x = a > 0.

(a) Show that the two-cluster partitioning that minimizes Je groups the k samples
at x = 0 with the one at x = a if a2 < 2(k + 1).

(b) What is the optimal grouping if a2 > 2(k + 1)?

13. Let x1 = (4; 5)t, x2 = (1; 4)t, x3 = (0; 1)t, and x4 = (5; 0)t, and consider the
following three partitions:

1. H1 = fx1;x2g;H2 = fx3;x4g
2. H1 = fx1;x4g;H2 = fx2;x3g
3. H1 = fx1;x2;x3g;H2 = fx4g

Show that by the sum-of-square error (or trSW ) criterion, the third partition is fa-
vored, whereas by the invariant jSW j criterion the �rst two partitions are favored.
14. Consider the problem of invariance to transformation of the feature space.

(a) Show the eigenvalues �1; :::; �d of S�1W SB are invariant to nonsingular linear
transformations of the data.

(b) Show that the eigenvalues �1; :::; �d of S
�1
T SW are related to those of S�1W SB by

�i = 1=(1 + �i).

(c) Use your above results to show that Jd = jSW j=jST j is invariant to nonsingular
linear transformations of the data?

15. One way to generalize the basic-minimum-squared-error procedure is to de�ne
the criterion function

JT =
cX

i=1

X
x2Hi

(x�mi)
tS�1T (x�mi);

where mi is the mean of the ni samples in Hi and ST is the total scatter matrix.

(a) Show that JT is invariant to nonsingular linear transformations of the data.

(b) Show that the transfer of a sample x̂ from Hi to Hj causes JT to change to

J�T = JT �
h nj
nj + 1

(x̂�mj)
tS�1T (x̂�mj)� ni

ni � 1
(x̂�mi)

tS�1T (x̂�mi)
i
:

(c) Using this results, write pseudocode for an iterative procedure for minimizing
JT (cf. Computer Exercise 5).

16. Let d be the dimensionality of the space, q a parameter and � a vector of
parameters. For each of the measures shown, state whether it represents a metric (or
not), and whether it represents an ultrametric (or not).
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(a) s(x;x0) = kx� x0k2 (squared Euclidean)

(b) s(x;x0) = kx� x0k (Euclidean)

(c) s(x;x0) =

�
dP

k=1

jxk � x0k jq
�1=q

(Minkowski)

(d) s(x;x0) = xtx0=kxkkx0k (cosine)
(e) s(x;x0) = xtx0 (dot product)

(f) s(x;x0) = max�kx+�T(x) � x0k2 (one-sided tangent distance)

17. Use the facts that ST = SW + SB ; Je = trSW , and trSB =
P

nikmi �mk2 to
derive Eqs. ?? & ?? for the change in Je resulting from transferring a sample x̂ from
cluster Hi to cluster Hj .
18. Let cluster Hi contain ni samples, and let dij be some measure of the distance
between two clusters Hi and Hj . In general, one might expect that if Hi and Hj are
merged to form a new cluster Hk, then the distance from Hk to some other cluster
Hh is not simply related to dhi and dhj . However, consider the equation

dhk = �dhi + �jdhj + �dij + 
jdhi � dhj j:

Show that the following choices for the coe�cients �i; �j ; �, and 
 lead to the distance
functions indicated.

(a) dmin : �i = �j = 0:5; � = 0; 
 = �0:5.
(b) dmax : �i = �j = 0:5; � = 0; 
 = +0:5.

(c) davg : �i =
ni

ni+nj
; �j =

nj
ni+nj

; � = 
 = 0.

(d) d2mean : �i =
ni

ni+nj
; �j =

nj
ni+nj

; � = ��i�j ; 
 = 0.

19. Consider a hierarchical clustering procedure in which clusters are merged so as
to produce the smallest increase in the sum-of-squared error at each step. If the ith
cluster contains ni samples with sample mean mi, show that the smallest increase
results from merging the pair of clusters for which

ninj
ni + nj

kmi �mjk2

is minimum.
20. Consider the representation of the points x1 = (1; 0)t;x2 = (0; 0)t and x3 =
(0; 1)t by a one-dimensional con�guration. To obtain a unique solution, assume that
the image points satisfy 0 = y1 < y2 < y3.

(a) Show that the criterion function Jee is minimized by the con�guration with
y2 = (1 +

p
2)=3 and y3 = 2y2.

(b) Show that the criterion function Jff is minimized by the con�guration with
y2 = (2 +

p
2)=4 and y3 = 2y2.
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21. Verify the derivation of Eqs. ?? { 10.
22. Consider the combinatorics of exhaustive inspection of clusters of n samples into
c clusters.

(a) Show that there are exactly

1

c

cX
i=1

�
c

i

�
(�1)c�1in

such distinct clusterings.

(b) How many clusters are there for n = 100 and c = 5?

(c) Find an approximation when n� c.

23. Show that the sum of squared error for the partition in Sect. ?? or Fig. ?? has
mean n(d� 2=�)�2 and variance 2n(d� 8=�2)�4.
24. Derive the invariants of Eqs. 56 & 57.
25. Prove that the ranking of distances between samples discussed in Sect. ?? is
invariant to any monotonic transformation of the dissimilarity values. Do this as
follows:

(a) De�ne the value vk for the clustering at level k, and for level 1 let v1 = 0. For all
higher levels, vk is the minimum dissimilarity between pairs of distinct clusters
at level k � 1. Explain why with both �min and �max the value vk either stays
the same or increases as k increases.

(b) Assume that no two of the n samples are identical, so that v2 > 0. Use this to
prove monotonicity, i.e., that 0 = v1 � v2 � v3 � � � � � vn.

26. Derive Eqs. 74 & 75.
27. Consider ???

(a) Starting from Eq. 16, derive Eqs. 16 { 18.

(b) Repeat, but assume that the covariance matrices are diagonal.

(c) Repeat, but assume that the covariance matrices are equal.

28. Show how exact solutions in Bayes and Max Likelihood are exponential as
follows. Consider [[more here]]
29. Show that the clustering criterion Jd in Eq. 54 is invariant to linear transforma-
tions of the space as follows. Let T be a nonsingular matrix and consider the change
of variables x0 = Tx.

(a) Write the new mean vectors m0
i and scatter matrices S0i in terms of the old

values and T.

(b) Calculate J 0d in terms of the (old) Jd and show that they di�er solely by an
overall scalar factor.

(c) Since this factor is the same for all partitions, argue that Jd and J 0d rank the
partitions in the same way, and hence that the optimal clustering based on Jd
is invariant to nonsingular linear transformations of the data.
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Since the scale factor jTj2 is the same for all partitions, it follows that Jd and J 0d rank
the partitions in the same way, and hence that the optimal clustering based on Jd is
invariant to nonsingular linear transformations of the data.
30. Derive Eqs. 62 & 63.
31. Show that the eigenvalues �1; . . . ; �d of S1WSB (for the within- and between-
cluster scatter matrices) are invariant under nonsingular linear transformations of the
data.
32. Problem where some parameters can b identi�ed, but not all. [[more here]]
33. Show that a two-layer ART network cannot solve the XOR problem.
34. Assume that a mixture density p(xj�) is identi�able. Prove that under very
general conditions that p(�jHn) convergest (in probability) to a Dirac delta function
centered at the true value of �.

Computer exercises

Data table for several problems (3 D) do vs 2 D projections...) create dendrograms
sample x1 x2 x3 sample x1 x2 x3

1 0.523 0.59 1.26 11 0.608 0.799 1.340
2 0.517 0.519 0.921 12 0.575 0.613 0.538
3 0.680 0.276 1.26 13 0.532 0.371 1.081
4 0.558 0.597 1.19 14 0.614 0.653 1.284
5 0.514 0.251 1.36 15 0.634 0.729 0.644
6 0.604 0.783 1.12 16 0.634 0.383 1.308
7 0.697 0.755 1.28 17 0.647 0.342 0.784
8 0.629 0.285 1.36 18 0.675 0.442 0.855
9 0.59 0.213 1.26 19 0.591 0.317 0.586
10 0.515 0.212 1.31 20 0.624 0.378 1.145L
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1. Write a program to lkjsd
ksdj lkjsd
sdj sdlkfjsd fsd dlfkjs df
2. Consider the univariate normal mixture

p(xj�) = P (!1)p
2��1

exp

�
�1

2

�x� �1
�1

�2�
+

P (!2)p
2��2

exp

�
�1

2

�x� �2
�2

�2�
:

3. Write a computer program that uses the general maximum likelihood equation of
Sect. ?? iteratively to estimate the unknown means, variances, and a priori probabil-
ities. Use this program to �nd maximum likelihood estimates of these parameters for
the data in Table ??.
4. hill climbing for clustering. Start at BAD and at GOOD starting places. Note
that do not get same answer.
5. Write a program to perform the minimization of in Problem 15.
6. Cluster with one metric, then classify with a di�erent metric [[more here]]


