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Introduction �

Abstract

We derive new bounds for the generalization error of kernel machines�
such as support vector machines and related regularization networks by
obtaining new bounds on their covering numbers� The proofs make use
of a viewpoint that is apparently novel in the �eld of statistical learning
theory� The hypothesis class is described in terms of a linear operator
mapping from a possibly in�nite dimensional unit ball in feature space
into a �nite dimensional space� The covering numbers of the class are
then determined via the entropy numbers of the operator� These num	
bers� which characterize the degree of compactness of the operator� can
be bounded in terms of the eigenvalues of an integral operator induced by
the kernel function used by the machine� As a consequence we are able
to theoretically explain the e
ect of the choice of kernel function on the
generalization performance of support vector machines�
Index terms� �	entropy� covering numbers� statistical learning theory�
support vector machines� linear operators�

� Introduction

In this paper we give new bounds on the covering numbers for kernel machines�
This leads to improved bounds on their generalization performance� Kernel ma�
chines perform a mapping from input space into a feature space �see e�g� ��� ���	�
construct regression functions or decision boundaries based on this mapping�
and use constraints in feature space for capacity control� Support Vector �SV	
machines� which have recently been proposed as a new class of learning al�
gorithms solving problems of pattern recognition� regression estimation� and
operator inversion �
�� are a well known example of this class� We will use SV
machines as our model of choice to show how bounds on the covering numbers
can be obtained� We outline the relatively standard methods one can then use
to hence bound their generalization performance� SV machines� like most kernel
based methods� possess the nice property of de�ning the feature map in a man�
ner that allows its computation implicitly at little additional computational
cost� Our reasoning also applies to similar algorithms such as regularization
networks ��
� or certain unsupervised learning algorithms ��
�� Let us now take
a closer look at SV machines� Central to them are two ideas� capacity control
by maximizing margins� and the use of nonlinear kernel functions�

Capacity control� In order to perform pattern recognition using linear hyper�
planes� often a maximum margin of separation between the classes is sought
for� as this leads to good generalization ability independent of the dimension�
ality �

� 
�� 
��� It can be shown that for separable training data

�x�� y�	� � � � � �xm� ym	 � R
d � f��g� ��	

this is achieved by minimizing kwk� subject to the constraints yj�hw�xji�b	 �
� for j � �� � � � �m� and some b � R� The decision function then takes the form

f�x	 � sgn�hw�xi � b	� ��	
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Similarly� a linear regression

f�x	 � hw�xi� b ��	

can be estimated from data

�x�� y�	� � � � � �xm� ym	 � R
d � R �
	

by �nding the �attest function which approximates the data within some margin
of error� in this case� one minimizes kwk� subject to jf�xj	 � yjj � �� where
the parameter � � � plays the role of the margin� albeit not in the space of the
inputs x� but in that of the outputs y� The analogy to pattern recognition is
somewhat loose� and there exist alternative ways of introducing a margin �e�g�
in the space Rm of all outputs y�� � � � � ym� ����	�

In both cases� generalizations for the nonseparable or nonrealizable case
exist� using various types of cost functions ���� 
�� 
���

Nonlinear kernels� In order to apply the above reasoning to a rather general
class of nonlinear functions� one can use kernels computing dot products in
high�dimensional spaces nonlinearly related to input space ��� 
�� Under cer�
tain conditions on a kernel k� to be stated below �Theorem 
	� there exists a
nonlinear map � into a reproducing kernel Hilbert space F �see e�g� ����	 such
that k computes the dot product in F � i�e�

k�x�y	 � h��x	���y	iF � ��	

Given any algorithm which can be expressed in terms of dot products exclu�
sively� one can thus construct a nonlinear version of it by substituting a kernel
for the dot product� Examples of such machines include SV pattern recognition
�
�� SV regression estimation �
��� and kernel principal component analysis ��
��

By using the kernel trick for SV machines� the maximum margin idea is
thus extended to a large variety of nonlinear function classes �e�g� radial basis
function networks� polynomial networks� neural networks	� which in the case of
regression estimation comprise functions written as kernel expansions

f�x	 �

mX
i��

�jk�xj �x	 � b� ��	

with �j � R� j � �� � � � �m� It has been noticed that di�erent kernels can be
characterized by their regularization properties �
��� SV machines are regular�
ization networks minimizing the regularized risk Rreg�f � � Remp�f � �

�
�kPfk��

�with a regularization parameter � � �� and a regularization operator P 	 over
the set of functions of the form ��	� provided that k and P are interrelated
by k�xs�xt	 � h�Pk	�xs� �	� �Pk	�xt � �	i� To this end� k is chosen as Green�s
function of P �P where P � is the adjoint of P �

This provides insight into the regularization properties of SV kernels� How�
ever� it does not completely settle the issue of how to select a kernel for a
given learning problem� and how using a speci�c kernel might in�uence the
performance of a SV machine�
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��� Outline of the paper

In the present work� we show that properties of the spectrum of the kernel can
be used to make statements about the generalization error of the associated
class of learning machines� Unlike in previous SV learning studies� the kernel
is no longer merely a means of broadening the class of functions used� e�g� by
making a nonseparable dataset separable in a feature space nonlinearly related
to input space� Rather� we now view it as a constructive handle by which we
can control the generalization error�

A key feature of the present paper is the manner in which we directly bound
the covering numbers of interest rather than making use of a Combinatorial di�
mension �such as the VC�dimension or the fat�shattering dimension	 and sub�
sequent application of a general result relating such dimensions to covering
numbers� We bound covering numbers directly by viewing the relevant class of
functions as the image of a unit ball under a particular compact operator� A
general overview of the method is given in Section ��

The remainder of the paper is organized as follows� We start by introduc�
ing notation and de�nitions �Section �	� Section 
 formulates generalization
error bounds in terms of covering numbers� Section � contains the main result
bounding entropy numbers in terms of the spectrum of a given kernel� The
results in this paper rest on a connection between covering numbers of function
classes and entropy numbers of suitably de�ned operators� In particular we de�
rive an upper bound on the entropy numbers in terms of the size of the weight
vector in feature space and the eigenvalues of the kernel used� Section � shows
how to make use of kernels such as k�x	 � e�x� which do not have a discrete
spectrum� Section � presents some results on the entropy numbers obtained
for given rates of decay of eigenvalues and 
 shows how to extend the results
to several dimensions� The concluding section �Section �	 indicates how the
various results in the paper can be glued together in order to obtain overall
bounds on the generalization error�

We do not present a single master generalization error theorem for three key
reasons� �	 the only novelty in the paper lies in the computation of covering
numbers themselves� �	 the particular statistical result one needs to use depends
on the speci�c problem situation� �	 many of the results obtained are in a form
which� whilst quite amenable to ready computation on a computer� do not
provide much direct insight by merely looking at them� except perhaps in the
asymptotic sense� and �nally 
	 some applications �such as classi�cation	 where
further quantities like margins are estimated in a data dependent fashion� need
an additional luckiness argument �
�� to apply the bounds�

Thus although our goal has been theorems� we are ultimately forced to resort
to a computer to make use of our results� This is not necessarily a disadvan�
tage � it is a both a strength and a weakness of Structural Risk Minimization
�SRM	 �
�� that a good generalization error bound is both necessary and su��
cient to make the method work well� It is our expectation that the re�ned �and
signi�cantly more tight	 covering number bounds obtainable by our methods
will be exploitable in SRM algorithms � they could be used for example for
model selection� If one is running a computer program anyway� there is lit�
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tle point in expending a large e�ort to make the generalization error bounds
directly consumable in a pencil and paper sense�

� De�nitions and Notation

For d � N� Rd denotes the d�dimensional space of vectors x � �x�� � � � � xd	�
We de�ne spaces �dp as follows� as vector spaces� they are identical to R

d � in
addition� they are endowed with p�norms� for � � p � �� kxk�dp �� kxkp ��Pd

j�� jxj jp
���p

� for p � �� kxk�d
�

�� kxk� � maxj�������d jxj j� Note that a

di�erent normalization of the the �dp norm is used in some papers in learning
theory �e�g� �
��	�

Given m points x�� � � � �xm � �dp� we use the shorthand Xm � �x�� � � � � �x
�
m	�

Suppose F is a class of functions de�ned on R
d � The �d� norm with respect

to Xm of f � F is de�ned as kfk�Xm
�

�� maxi�������m jf�xi	j�
Given some set X� a measure � on X� some � � p � � and a function

f �X� K we de�ne kfkLp�X�K� ��
�R jf�x	jpd��x	���p if the integral exists and

kfkL��X�K� �� ess supx�X jf�x	j� For � � p � �� we let Lp�X�K 	 �� ff �X �
K � kfkLp �X�K� ��g� We let Lp�X	 �� Lp�X�R	�

Let L�E�F 	 be the set of all bounded linear operators T between the normed
spaces �E� k�kE 	 and �F� k�kF 	� i�e� operators such that the image of the �closed	
unit ball

UE �� fx � E� kxkE � �g ��	

is bounded� The smallest such bound is called the operator norm�

kTk �� sup
x�UE

kTxkF � �
	

The nth entropy number of a set M 	 E� for n � N� is

	n�M	 �� inff	 � � � there exists an 	�cover for M in E

containing n or fewer pointsg ��	

The entropy numbers of an operator T � L�E�F 	 are de�ned as

	n�T 	 �� 	n�T �UE		� ���	

Note that 	��T 	 � kTk� and that 	n�T 	 certainly is well de�ned for all n � N if
T is a compact operator� i�e� if T �UE	 is compact� The dyadic entropy numbers
of an operator are de�ned by

en�T 	 �� 	�n���T 	� n � N� ���	

similarly� the dyadic entropy numbers of a set are de�ned from its entropy
numbers� A very nice introduction to entropy numbers of operators is �����
The 	�covering number of F with respect to the metric d denoted N�	�F� d	 is
the size of the smallest 	�cover for F using the metric d�
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In this paper� E and F will always be Banach spaces� i�e� complete normed
spaces �for instance �dp spaces	� In some cases� they will be Hilbert spaces H�
i�e� Banach spaces endowed with a dot product h�� �iH giving rise to its norm
via kxkH �

phx� xiH �
By log and ln� we denote the logarithms to base � and e� respectively� By

i� we denote the imaginary unit i �
p��� k will always be a kernel� and d and

m will be the input dimensionality and the number of examples

�x�� y�	� � � � � �xm� ym	 � R
d � R� ���	

respectively� We will map the input data into a feature space via a mapping ��
We let �x �� ��x	�

� Operator Theory Methods for Entropy Numbers

In this section we brie�y explain the new viewpoint implicit in the present paper�
With reference to Figure �� consider the traditional viewpoint in statistical
learning theory� One is given a class of functions F� and the generalization
performance attainable using F is determined via the covering numbers of F�
More precisely� for some set X� and xi � X for i � �� � � � �m� de�ne the 	�Growth
function of the function class F on X as

Nm�	�F	 �� sup
x������xm�X

N�	�F� �X
m

� 	� ���	

where N�	�F� �X
m

� 	 is the 	�covering number of F with respect to �X
m

� � Many
generalization error bounds can be expressed in terms of Nm�	�F	� An example
is given in the following section�

The key novelty in the present work solely concerns the manner in which
the covering numbers are computed� Traditionally� appeal has been made to
a result such as the so�called Sauer�s lemma �originally due to Vapnik and
Chervonenkis	� In the case of function learning� a generalization due to Pollard
�called the pseudo�dimension	� or Vapnik and Chervonenkis �called the VC�
dimension of real valued functions	� or a scale�sensitive generalization of that
�called the fat�shattering dimension	 is used to bound the covering numbers�
These results reduce the computation of Nm�	�F	 to the computation of a
single �dimension�like� quantity� An overview of these various dimensions� some
details of their history� and some examples of their computation can be found
in ����

Note that the �plain� VC dimension is not appropriate in SV regression at
all as can be seen in the following� Denote r an arbitrary positive number and
C � Rn a compact set� Consider the class of functions

F ��

��
�f � f �

X
i

�ik�xi� �	 with xi � C�
X
i�j

�i�jk�xi� xj	 � r

��
	 ��
	

We show that F has in�nite VC dimension by showing that any arbitrary
set X � fx�� � � � � x�g 	 C of size � can be shattered� Since ��
� the matrix
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g � G f � F

Number of ��distinct

the size of F

Use knowledge of �Tk to determine

Measurements

Information

�x�� � � � � xm�

�smaller� than G�

Measurement points� akin to time instants
in the traditional communications
channel setting

Information
Source Sink

Channel

sup
x������xm

N���F� �m
�
�

functions �messages��

at output�

�Tk���

r � �f�x��� � � � � f�xm��

Traditional Learning Theory Viewpoint

Limitations of the channel make F

r

Figure � Schematic picture of the new viewpoint�
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�k�xi� xj	�ij has full rank for Gaussian rbf�kernels� For arbitrary fy�� � � � y�g �
f��� �g there exists a function f��	 � P

i �ik�xi� �	 with f�xi	 � yi� Rescaling
f �nally yields some �f � F which proves the statement�

In the present work� we view the class F as being induced by an operator
�Tk depending on some kernel function k� Thus F is the image of a �base
class� G under �Tk� The analogy implicit in the picture is that the quantity
that matters is the number of 	�distinguishable messages obtainable at the
information sink� �Recall the equivalence up to a constant factor of packing
and covering numbers�	 In a typical communications problem� one tries to
maximize the number of distinguisable messages �per unit time	� in order to
maximize the information transmission rate� But from the point of view of the
receiver� the job is made easier the smaller the number of distinct messages
that one needs to be concerned with decoding� The signi�cance of the picture
is that the kernel in question is exactly the kernel that is used� for example�
in support vector machines� As a consequence� the determination of Nm�	�F	
can be done in terms of properties of the operator �Tk� The latter thus plays
a constructive role in controlling the complexity of F and hence the di�culty
of the learning task� We believe that the new viewpoint in itself is potentially
very valuable� perhaps more so than the speci�c results in the paper� A further
exploitation of the new viewpoint can be found in ����� There are in fact a
variety of ways to de�ne exactly what is meant by �Tk� and we have deliberately
not been explicit in the picture� We make use of one particular �Tk in this paper�
A slightly di�erent approach is taken in �����

We conclude this section with some brief historical remarks�
The concept of the metric entropy of a set has been around for some time�

It seems to have been introduced by Pontriagin and Schnirelmann ���� and was
studied in detail by Kolmogorov and others ��
�� The use of metric entropy to
say something about linear operators was developed independently by several
people� Prosser ��
� appears to have been the �rst to make the idea explicit�
He determined the e�ect of an operator�s spectrum on its entropy numbers�
In particular� he proved a number of results concerning the asymptotic rate
of decrease of the entropy numbers in terms of the asymptotic behaviour of
the eigenvalues� A similar result is actually implicit in section �� of Shannon�s
famous paper ����� where he considered the e�ect of di�erent convolution op�
erators on the entropy of an ensemble� Prosser�s paper ��
� led to a handful of
papers �see e�g� ���� ��� �� ���	 which studied various convolutional operators�
A connection between Prosser�s 	�entropy of an operator and Kolmogorov�s 	�
entropy of a stochastic process was shown in ���� Independently� another group
of mathematicians including Carl and Stephani ���� studied covering numbers
�
�� and later entropy numbers ���� in the context of operator ideals� �They
seem to be unaware of Prosser�s work � see e�g� ��� p� �����	

Connections between the local theory of Banach spaces and uniform con�
vergence of empirical means has been noted before �e�g� ����	� More recently
Gurvits ��
� has obtained a result relating the Rademacher type of a Banach
space to the fat�shattering dimension of linear functionals on that space and
hence via the key result in �
� to the covering numbers of the induced class�
We will make further remarks concerning the relationship between Gurvits� ap�
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proach and ours in ����� for now let us just note that the equivalence of the
type of an operator �or of the space it maps to	� and the rate of decay of its
entropy numbers has been �independently	 shown by Kolchinski ! ���� ��� and
Defant and Junge ���� ���� Note that the exact formulation of their results
di�ers� Kolchinski ! was motivated by probabilistic problems not unlike ours�

� Generalization Bounds via Uniform Convergence

The generalization performance of learning machines can be bounded via uni�
form convergence results as in ���� 
��� A recent review can be found in ���� The
key thing about these results is the role of the covering numbers of the hypoth�
esis class � the focus of the present paper� Results for both classi�cation and
regression are now known� For the sake of concreteness� we quote below a re�
sult suitable for regression which was proved in �
�� Let Pm�f	 �� �

m

Pm
i�� f�xi	

denote the empirical mean of f on the sample x�� � � � �xm�

Lemma � �Alon� Ben�David� Cesa�Bianchi� and Haussler� ����� Let F
be a class of functions from X into ��� �� and let P be a distribution over X� then�
for all 	 � � and all m � �

��
�

Pr



sup
f�F

jPm�f	� P �f	j � 	

�
� ��m �E

h
N

�
�
� �F� �

�X�m

�
�i

e��
�m��� ���	

where Pr denotes the probability w�r�t� the sample x�� � � � �xm drawn i�i�d� from
P � and E the expectation w�r�t� a second sample �Xm � ��x�� � � � � � �x

�
�m	 also drawn

i�i�d� from P �

In order to use this lemma one usually makes use of the fact that for any P �

E
h
N�	�F� �

�Xm

� 	
i
� Nm�	�F	� ���	

The above result can be used to give a generalization error result by applying it
to the loss�function induced class� The following Lemma� which is an improved
version of ��� Lemma ���� is useful in this regard�

Lemma � Denote F a set of functions from X to �a� b� with a � b� a� b � R
��
and l � R � R

�
	 a loss function� Let z �� �xi� yi	

m
j��� lf jzj �� l�f�xj	 � yj	�

lf jz �� �lf jzj 	mj��� lFjz �� flf jz� f � Fg and N�	� ljz	 �� N�	� lFjz� �z�	� Then the
following two statements hold�

�� Suppose l satis�es the Lipschitz�condition

l�
	� l�
�	 � Cj
 � 
�j for all 
� 
� � �a� b� b� a�� ���	

Then for all 	 � �

max
z��X�
a�b��m

N�	� ljz	 � max
x�Xm

N

� 	
C
�Fjx

�
��
	

and
max

z��X�
a�b��m
N�	� ljz	 � max

x�Xm
N

�	m
C
�Fjx� lx�

�
� ���	
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�� Suppose that for some C� �C � �� l satis�es the �approximate Lipschitz�
condition	

l�
	� l�
�	 � max�Cj
 � 
�j� �C	 for all 
� 
� � �a� b� b� a� ���	

then for all 	 � �C�C

max
z��X�
a�b��m

N�	� ljz	 � max
x�Xm

N

� 	
C
�Fjx

�
� ���	

Proof We show that� for any sequence z of �x� y	 pairs in X � �a� b� and
any functions f and g� if the restrictions of f and g to x are close� then the
restrictions of lf and lg to z are close� Thus� given a cover of Fjx we can
construct a cover of lFjz that is no bigger� For part � we get�

�

m

������
mX
j��

l�g�xj	� yj	� l�f�xj	� yj	

������ � �

m

mX
j��

jl�g�xj � yj		� l�f�xj � yj		j

� �

m

mX
j��

Cjg�xj	� f�xj	j

�
C

m
kg�Xm	� f�Xm	k�m�

� Ckg�Xm	� f�Xm	k�m
�

�

In the second case we proceed similarly

�

m

������
mX
j��

l�g�xj � yj		� l�f�xj � yj		

������ � C

m

mX
j��

max�jg�xj	� f�xj	j� �C�C	

� C	 for 	 � �C�C�

The second case can be useful� when the exact form of the cost function is not
known� happens to be discontinuous or is badly behaved in some other way��

It shows how down to a scale �C�C statements about the covering numbers
of the loss�function induced class can be made� Applying the result above to
polynomial loss leads to the following corollary�

Corollary 	 Let the assumptions be as above in lemma �� Then for loss func�
tions of type

l��	 �
�

p
�p with p � � ���	

we have C � �b� a	�p���� in particular C � �b� a	 for p � � and therefore

max
z��X�
a�b��m

N�	� ljz	 � max
x�Xm

N



	

�b� a	p��XC
�Fjx

�
���	

�The two cases could be combined into one by writing the conditions in terms of the
modulus of continuity� For the sake of clarity � however� we refrained from doing so�
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One can readily combine the uniform convergence results with the above re�
sults to get overall bounds on generalization performance� We do not explicitly
state such a result here since the particular uniform convergence result needed
depends on the exact set�up of the learning problem� A typical uniform con�
vergence result takes the form

Pmfsup
f
jRemp�f	�R�f	j � 	g � c��m	Nm�	�F	e��

�m�c� � ��
	

Even the exponent in ��
	 depends on the setting� In regression 
 can be set
to �� however in agnostic learning ���� in general 
 � �� except if the class is
convex in which case it can be set to � ����� Since our primary interest is in
determining Nm�	�F	 we will not try to summarize the large body of work now
done on uniform convergence results and generalization error�

These generalization bounds are typically used by setting the right hand side
equal to � and solving for m � m�	� �	 �which is called the sample complexity	�
Another way to use these results is as a learning curve bound �	���m	 where

Pmfsup
f
jRemp�f	�R�f	j � �	���m	g � ��

We note here that the determination of �	���m	 is quite convenient in terms of
en� the dyadic entropy number associated with the covering number Nm�	�F	
in ��
	� Setting the right hand side of ��
	 equal to �� we have

� � c��m	Nm�	�F	e��
�m�c�

� log
�

�
c��m�

�
� ��m

c� ln �
� logNm�	�F	

� e
log
�

�
c��m�

�
� ��m
c� ln �

��
� 	� ���	

Thus �	���m	 � f	� ���	 holdsg� Thus the use of 	n or en �which will arise
naturally from our techniques	 is in fact a convenient thing to do for �nding
learning curves�

� Entropy Numbers for Kernel Machines

In the following we will mainly consider machines where the mapping into
feature space is de�ned by Mercer kernels k�x�y	 as they are easier to deal with
using functional analytic methods� Such machines have become very popular
due to the success of SV machines� Nonetheless in Subsection ��� we will show
how a more direct approach could be taken towards upper"bounding entropy
numbers�

��� Mercer�s Theorem� Feature Spaces and Scaling

Our goal is to make statements about the shape of the image of the input space
X under the feature map ���	� We will make use of Mercer�s theorem� The
version stated below is a special case of the theorem proven in ���� p� �
��� In
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the following we will assume �X� �	 to be a �nite measure space� i�e� ��X	 ���
As usual� by �almost all� we mean for all elements of Xn except a set of �n�
measure zero�

Theorem 
 �Mercer� Suppose k � L��X�	 is a symmetric kernel 
hence
k�x� x�	 � k�x�� x	� such that the integral operator Tk � L��X	� L��X	�

Tkf��	 ��
Z
X

k���y	f�y	d��y	 ���	

is positive� Let �j � L��X	 be the eigenfunction of Tk associated with the
eigenvalue �j �� � and normalized such that k�jkL� � ��

�� ��j�T 		j � ���

�� �j � L��X	 and supj k�jkL� ���

�� k�x�y	 �
P
j�N

�j�j�x	�j�y	 holds for almost all �x�y	� where the series

converges absolutely and uniformly for almost all �x�y	�

We will call a kernel satisfying the conditions of this theorem a Mercer kernel�
From statement � of Mercer�s theorem there exists some constant Ck � R�

depending on k��� �	 such that

j�j�x	j � Ck for all j � N and x � X� ���	

�Actually ���	 holds only for almost all x � X� but from here on we gloss
over these measure�theoretic niceties in the exposition�	 Moreover from state�
ment � it follows that k�x�y	 corresponds to a dot product in �� i�e� k�x�y	 �
h��x	���y	i�� with

� � X � ��
x 
� ��j�x		j �� �

p
�j�j�x		j

��
	

for almost all x � X� In the following we will �without loss of generality	
assume the sequence of ��j	j be sorted in nonincreasing order� From the argu�
ment above one can see that ��X	 lives not only in �� but in an axis parallel
parallelepiped with lengths �Ck

p
�j �

It will be useful to consider maps that map ��X	 into balls of some radius
R centered at the origin� The following proposition shows that the class of all
these maps is determined by elements of �� and the sequence of eigenvalues
��j	j �

Proposition � �Mapping ��x	 into ��� Let S be the diagonal map

S � RN � RN

S � �xj	j 
� S�xj	j � �sjxj	j �
���	

Then S maps ��X	 into a ball of �nite radius RS centered at the origin if and
only if �

p
�jsj	j � ���
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Proof
��	 Suppose �sj

p
�j	j � �� and let R�

S �� C�
kk�sj

p
�j	jk��� � �� For any

x � X�
kS��x	k��� �

X
j�N

s�j�jj�j�x	j� �
X
j�N

s�j�jC
�
k � R�

S � ���	

Hence S��X	 � ���
��	 Suppose �sj

p
�j	j is not in ��� Hence the sequence �An	n with An ��

nP
j��

s�j�j is unbounded� Now de�ne

an�x	 ��
nX

j��

s�j�jj�j�x	j�� ���	

Then kan��	kL��X� � An due to the normalization condition on �j � However�

as ��X	 �� there exists a set �X of nonzero measure such that

an�x	 � An

��X	
for all x � �X� ���	

Combining the left side of ���	 with ���	 we obtain kS��x	k��� � an�x	 for all

n � N and almost all x� Since an�x	 is unbounded for a set �X with nonzero
measure in X� we can see that S��X	 �	 ���

The consequence of this result is that there exists no axis parallel ellipsoid E
not completely containing the �also	 axis parallel parallelepiped B of sidelength
��Ck

p
�j	j � such that E would contain ��X	� More formally

B 	 E if and only if ��X	 	 E�

Hence ��X	 contains a set of nonzero measure of elements near the corners of
the parallelepiped�

Once we know that ��X	 ��lls� the parallelepiped described above we can
use this result to construct an inverse mapping A from the unit ball in �� to an
ellipsoid E such that ��X	 	 E as in the following diagram�

X
� �� ��X	

A�� ��

T
U��

A

��� � �
� � �

� � �
� � �

� � �

E

���	

The operator A will be useful for computing the entropy numbers of concate�
nations of operators� �Knowing the inverse will allow us to compute the for�
ward operator� and that can be used to bound the covering numbers of the
class of functions� as shown in the next subsection�	 We thus seek an operator
A � �� � �� such that

A�U��	 � E� ��
	

We can ensure this by constructing A such that

A� �xj	j 
� �RAajxj	j ���	
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with RA �� Ckk�
p
�j�aj	jk�� � From Proposition � it follows that all those

operators A for which RA �� will satisfy ��
	� We call such scaling �inverse	
operators admissible�

��� Entropy Numbers

The next step is to compute the entropy numbers of the operator A and use this
to obtain bounds on the entropy numbers for kernel machines like SV machines�
We will make use of the following theorem due to Gordon� K#onig and Sch#utt
���� p� ���� �stated in the present form in ���� p� ���	�

Theorem � Let �� � �� � � � � � �j � � � � � � be a non�increasing sequence of
non�negative numbers and let

Dx � ���x�� ��x�� � � � � �jxj� � � �	 ���	

for x � �x�� x�� � � � � xj � � � �	 � �p be the diagonal operator from �p into itself�
generated by the sequence ��j	j� where � � p � �� Then for all n � N�

sup
j�N

n�
�
j ����� � � � �j	

�
j � 	n�D	 � � sup

j�N
n�

�
j ����� � � � �j	

�
j � ���	

We can exploit the freedom in choosing A to minimize an entropy number as
the following corollary shows� This will be a key ingredient of our calculation
of the covering numbers for SV classes� as shown below�

Corollary � �Entropy numbers for ��X	� Let k�X � X � R be a Mercer
kernel and let A be de�ned by 
�
�� Then

	n�A� �� � ��	 � inf
�as�s
�

p
�s�as	

s
���

sup
j�N

�Ck

����p�s�as

�
s

���
��
n
� �
j �a�a� � � � aj	

�
j �

��
	

This result follows immediately by identifying D and A and exploiting the
freedom that we still have in choosing a particular operator A among the class
of admissible ones�

As already described in Section � the hypotheses that a SV machine gen�
erates can be expressed as hw� �xi � b where both w and �x are de�ned in the
feature space S � span���X		 and b � R� The kernel trick as introduced by ���
was then successfully employed in �
� and ���� to extend the Optimal Margin
Hyperplane classi�er to what is now known as the SV machine� We deal with
the ��b� term in Section �� for now we consider the class

FRw �� fhw� �xi� �x � S� kwk � Rwg � R
S �

Note that FRw depends implicitly on k since S does�
What we seek are the �m� covering numbers for the class FRw induced by

the kernel in terms of the parameter Rw which is the inverse of the size of
the margin in feature space� or equivalently� the size of the weight vector in
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feature space as de�ned by the dot product in S �see �

� 
�� for details	� In
the following we will call such hypothesis classes with length constraint on the
weight vectors in feature space SV classes� Let T be the operator T � S �XmRw

where Rw � R and the operator S �Xm is de�ned by

S �Xm � �� � �m�
S �Xm � w 
� �h�x��wi� � � � � h�xm�wi	 � ���	

with �xj � ��X	 for all j� The following theorem is useful when computing
entropy numbers in terms of T and A� It is originally due to Maurey� and was
extended by Carl ����� See ���� for some extensions and historical remarks�

Theorem 
 �Carl and Stephani ���� p� �
��� Let S � L�H� �m�	 where H
is a Hilbert space� Then there exists a constant c � � such that for all m � N�
and � � j � m

en�S	 � ckSk
�
n�� log

�
� �

m

n

�����
�

An alternative proof of this result �given in ����	 provides a small explicit value
for the constant� c � �� �

��log �	
��� � �������

The restatement of Theorem 
 in terms of 	�n�� � en will be useful in the
following� Under the assumptions above we have

	n�S	 � ckSk


�log n� �	�� log



� �

m

log n� �

�����

� �
�	

Now we can combine the bounds on entropy numbers of A and SXm to
obtain bounds for SV classes� First we need the following lemma�

Lemma � �Carl and Stephani ���� p� ���� Let E�F�G be Banach spaces�
R � L�F�G	� and S � L�E�F 	� Then� for n� t � N�

	nt�RS	 � 	n�R		t�S	 �
�	

	n�RS	 � 	n�R	kSk �
�	

	n�RS	 � 	n�S	kRk� �
�	

Note that the latter two inequalities follow directly from the fact that 	��R	 �
kRk for all R � L�F�G	�

Theorem �� �Bounds for SV classes� Let k be a Mercer kernel� let � be
induced via 
��� and let T �� S �XmRw where S �Xm is given by 
��� and Rw � R� �
Let A be de�ned by 
�
� and suppose �xj � ��xj	 for j � �� � � � �m� Then the
entropy numbers of T satisfy the following inequalities�

	n�T 	 � ckAkRw log���� n log���
�
� � m

log n

�
�

	

	n�T 	 � �Rw	n�A	 �
�	

	nt�T 	 � �cRw log���� n log���
�
� � m

log n

�
	t�A	

where Ck and c are de�ned as in Corollary � and Lemma ��
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This result gives several options for bounding 	n�T 	� The reason for using 	n
instead of en is that the index only may be integer in the former case �whereas
it can be in ����	 in the latter	� thus making it easier to obtain tighter bounds�
We shall see in examples later that the best inequality to use depends on the
rate of decay of the eigenvalues of k� The result gives e�ective bounds on
Nm�	�FRw	 since

	n�T � �� � �m�	 � 		 � Nm�		�FRw	 � n�

Proof We will use the following factorization of T to upper bound 	n�T 	�

U��
� ��

Rw

��

�m�

RwU��

S �Xm

���������������������
A �� RwE

S�A�� �Xm�

�� �
�	

The top left part of the diagram follows from the de�nition of T � The fact
that remainder commutes stems from the fact that since A is diagonal� it is
self�adjoint and so

hw� �xi � hw� AA���xi � hAw� A���xi� �
�	

Instead of computing the covering number of T � S �XmRw directly� which is
di�cult or wasteful� as the the bound on S �Xm does not take into account that
�x � E but just makes the assumption of �x � �U�� for some � � �� we will
represent T as S�A�� �Xm�ARw� This is more e�cient as we constructed A such

that A����X	 � U�� �lling a larger proportion of it than just �
���X	�

By construction of A and due to the Cauchy�Schwarz inequality we have
kSA�� �Xmk � �� Thus applying lemma � to the factorization of T and using
Theorem 
 proves the theorem�

As we shall see in Section �� one can give asymptotic rates of decay for 	n�A	�
�In fact we give non�asymptotic results with explicitly evaluable constants�	 It
is thus of some interest to give overall asymptotic rates of decay of 	n�T 	 in
terms of the order of 	n�A	�

Lemma �� �Rate bounds on 	n� Let k be a Mercer kernel and suppose A
is the scaling operator associated with it as de�ned by 
�
��

�� If 	n�A	 � O�log�� n	 for some � � � then

	n�T 	 � O�log�������� n	� �

	

�� If log 	n�A	 � O�log�	 n	 for some 
 � � then

log 	n�T 	 � O�log�	 n	� �
�	
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This Lemma shows that in the �rst case� Maurey�s result �theorem 
	 allows
an improvement in the exponent of the entropy number of T � whereas in the
second� it a�ords none �since the entropy numbers decay so fast anyway	� The
Maurey result may still help in that case though for nonasymptotic n�
Proof From theorem 
 we know that 	n�S	 � O�log�� n	� Now use �
�	�
splitting the index n in the following way�

n � n
n���
� with � � ��� �	� ���	

For the �rst case this yields

	n�T 	 � O�log���� n
 	O�log�� j
��	
� �������� �	��O�log�������� n	 � O�log�������� n	�

���	

In the second case we have

log 	n�T 	 � log
�
������	O�log���� n	

�
� ��� �	�	O�log�	 n	 � O�log�	 n	�

���	

In a nutshell we can always obtain rates of convergence better than those
due to Maurey�s theorem because we are not dealing with arbitrary mappings
into in�nite dimensional spaces� In fact� for logarithmic dependency of 	n�T 	
on n� the e�ect of the kernel is so strong that it completely dominates the
��	� behaviour for arbitrary Hilbert spaces� An example of such a kernel is
k�x� y	 � exp���x � y	�	� see Proposition �� and also Section � for the dis�
cretization question�

��� Empirical Bounds

Instead of theoretically determining the shape of ��X	 a priori one could use
the training and$or test data to empirically estimate its shape and use this
quantity to compute an operator Bemp analogously to ���	 which performs the
mapping described above� In this subsection we will sketch a possible approach
� the full development of these ideas would requires considerable further work
and will be deferred to a subsequent paper�

For instance assume that we are given an m"sample of datapoints X ��
fx�� � � � �xmg 	 X� not necessarily only from the training set but perhaps also
comprising unlabelled test samples� drawn from the same distribution P � Now
suppose we could estimate the �rst j radii �e�g� in a manner similar to the radius
estimate in ����	 fr�� � � � � rjg of an ellipsoid enclosing ��X	 with probability say
� � ��� Denote by fe�� � � � � ej��g 	 �� a set of orthogonal vectors pointing in
the directions given by the radii and Pj the projector onto �spanfe�� � � � � ej��g	�
Note that we only have to be sure that with probability ��� the data lies inside
the ellipsoid and that we need no statement on the precision of the estimate

�This for instance could be done in a way similar to Kernel�PCA ���� by computing the
eigensystem ��i� �ij� of the Gram matrix kij 	 k�xi� xj�� Then� possibly after some ordering�p
�i � ri 	

p
�imaxj j�ij j�
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of the radii � this makes a big di�erence in terms of the volume� Then with
probability � � � we could upper bound the covering numbers of a scaling
operator Bemp by making use of corollary �� Due to the ellipsoid condition the
following inequality holds for all xs�

j��X
t��

het���xt	i�
r�t

� � ���	

and moreover kPj��xt	k�� � rj for all � � t � M � Hence for an operator
Bemp

�� scaling the �rst j�� directions e�� � � � � ej�� by r��t and the rest by r��j �

Bemp
����X	 would still be enclosed in

p
�U�� � Hence we have a similar situation

as in the case where we explicitly computed all eigenvalues analytically� Setting
rt �� rj for t � j and applying corollary � leads to the following upper bound
on the entropy of Bemp

	n�Bemp	 � �
p
� sup
j�N

n�
�
j �r�r� � � � rj	

�
j ��
	

The aim is now to �nd the maximum n for which the estimate will not break
down yet �for we have the liberty of distributing the covering numbers arbi�
trarily between the shrinkage operator Bemp and the actual evaluation operator
SXm as shown in section �	� In other words we are looking for that particular
value of j where supj is taken on for the smallest radius estimated� Ignoring
the fact that n � N for a moment we arrive at the following equation�

n�
�
j �r�r� � � � rj	

�
j � n�

�
j�� �r�r� � � � rj � rj	

�
j�� ���	

Solving for n yields and taking n � N into account yields

nj �

�
r�r� � � � rj

rjj

�
and therefore 	nj���Bemp	 � �

p
�rj ���	

This calculation is valid as nj is a nondecreasing function of j�
nj��

nj
�
�

rj
rj��

�j
�

If this assumption failed to be true one would have to rede�ne Bemp to scale
only the �rst �j directions for which this happened to hold � it gains one little
to scale in directions where the decay rate is too slow�

Instead of taking real data �which may be expensive to get	 we also could
upper bound the �rst j radii by a Monte"Carlo method� once we can bound the
set X� This is also useful when no analytic expansion in terms of eigenvalues
of the operator can be obtained or where it would be too tedious to obtain
explicitly� In cases with a su�cient amount of computational power available
this may even be a more practical and faster way than computing the spectrum
given by k analytically� The latter� at least in order to obtain optimal bounds�
would have to be done for each learning problem anew� The method proposed
here would obviate the need for such detailed theoretical calculations which
may be impractical to carry out in some instances�
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	 Discrete Spectra of Convolution Operators

The results presented above show that if one knows the eigenvalue sequence
��i	i of a compact operator� one can bound its entropy numbers� Whilst it is
always possible to assume that the data fed into a SV machine have bounded
support� the same can not be said of the kernel k��� �	� a commonly used kernel is
k�x� y	 � exp���x� y	�	 which has noncompact support� The induced integral
operator

�Tkf	�x	 �

Z �

��
k�x� y	f�y	dy ���	

then has a continuous spectrum �a nondenumerable in�nity of eigenvalues	 and
thus Tk is not compact ��� p������ The question arises� can we make use of
such kernels in SV machines and still obtain generalization error bounds of
the form developed above% A further motivation stems from the fact that by
a theorem of Widom ����� the eigenvalue decay of any convolution operator
de�ned on a a compact set via a kernel having compact support can decay no
faster than �j � O�e�j�	 and thus if one seeks very rapid decay of eigenvalues
�with concomitantly small entropy numbers	� one must use convolution kernels
with noncompact support�

We will resolve these issues in the present section� Before doing so� let us
�rst consider the case that suppk � ��a� a� for some a � �� Suppose further
that the data points xj satisfy xj � ��b� b� for all j� If k��� �	 is a convolution
kernel �i�e� k�x� y	 � k�x� y		� then the SV hypothesis hk��	 can be written

hk�x	 ��
mX
j��

�jk�x�xj	 �
mX
j��

�jkv�x�xj	 �� hkv�x	 ��
	

for v � ��a� b	 where kv��	 is the v�periodic extension of k��	�

kv�x	 ��

�X
j���

k�x� jv	� ���	

We now relate the eigenvalues of Tkv to the Fourier transform of k��	� We do
so for the case of d � � and then state the general case later�

Lemma �� Let k�R � R be a symmetric convolution kernel� let K��	 �
F �k�x	���	 denote the Fourier transform of k��	 
see 
���� and kv denote the
v�periodical kernel derived from k 
also assume that kv exists�� Then kv has a
representation as a Fourier series with �	 ��

��
v and

kv�x� y	 �
�P

j���

p
��
v K�j�		e

ij��x

�
p
��
v K��	 �

P�
j��

�
v

p
��K�j�		 cos�j�	�x� y		�

���	

Moreover �j �
p
��K�j�		 for j � Z and Ck �

q
�
v �
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Proof Clearly the Fourier series coe�cients Kj of kv exist �as kv exists	 with

Kj ��
�p
v

Z v��

v��
e�ij��xkv�x	dx

and therefore by the de�nition of kv and the existence of K��	 we conclude

Kj � �p
v

R v��
v��

P�
j��� e�ij��xk�x� jv	

� �p
v

P�
j���

R v��
v�� e

�ij��xk�x� jv	 �
q

��
v K�j�		�

This and the fact that fx 
� v����eij��x� j � Zg forms an orthogonal basis
in L����v

� �
v
� �� C 	 proves ���	� �Note that from k�x	 � k��x	 we conclude

K��	 � K���		� Furthermore� we are interested in real valued basis functions
for k�x� y	� The functions

�	�x	 �� �p
v

�j�x	 ��
q

�
v cos�j�	x	 and ��j�x	 ��

q
�
v sin�j�	x	 for all j � N

���	

form an eigensystem of the integral operator de�ned by kv with the correspond�

ing eigenvalues
p
��K�j�		� Finally one can see that Ck �

q
�
v by computing

the max over j � N and x � ��v��� v����

Thus even though Tk may not be compact� Tkv may be �if �K�j�			j�N 	 ��
for example	� The above lemma can be applied whenever we can form kv��	
from k��	� Clearly k�x	 � O�x������	 for some 	 � � su�ces to ensure the sum
in ���	 converges�

Let us now consider how to choose v� Note that the Riemann�Lebesgue
lemma tells us that for integrable k��	 of bounded variation �surely any kernel
one would use would satisfy that assumption	� one has K��	 � O����	� There
is an tradeo� in choosing v in that for large enough �� K��	 is a decreasing func�
tion of � �at least as fast as ���	 and thus by Lemma ��� �j �

p
��K���j�v	

is an increasing function of v� This suggests one should choose a small value of
v� But a small v will lead to high empirical error �as the kernel �wraps around�
and its localization properties are lost	 and large Ck� There are several ap�
proaches to picking a value of v� One obvious one is to a priori pick some �	 � �
and choose the smallest v such that jk�x	 � kv�x	j � �	 for all x � ��v��� v����
Thus one would obtain a hypothesis hkv�x	 uniformly within C�	 of hk�x	 wherePm

j�� j�j j � C�

Remark �	 The above Lemma can be readily extended to d dimensions� As�
sume k�x	 is v�periodic in each direction 
x � �x�� � � � � xd	�� we get

�j � ���	
d
�K��	j	 � ���	

d
�K��	kjk	 ���	

for radially symmetric k and �nally for the eigenfunctions Ck � ���v	
d
� �
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Finally it is worth explicitly noting how the choice of a di�erent bandwidth
of the kernel� i�e� letting k�
��x	 �� �dk��x	� a�ects the eigenspectrum of the
corresponding operator� We have K�
���	 � K����	� hence scaling a kernel
by � means more densely spaced eigenvalues in the spectrum of the integral
operator Tk����
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In this section we will show how the asymptotic behaviour of 	n�A� �� � ��	�
where A is the scaling operator introduced before� depends on the eigenvalues
of Tk�

A similar analysis has been carried out by Prosser ��
�� in order to compute
the entropy numbers of integral operators� However all of his operators mapped
into L��X� C 	� Furthermore� whilst our propositions are stated as asympotic
results as his were� the proofs actually give non�asympototic information with
explicit constants�

Note that we need to sort the eigenvalues in a nonincreasing manner because
of the requirements in corollary �� If the eigenvalues were unsorted one could
obtain far too small numbers in the geometrical mean of ��� � � � � �j � Many one�
dimensional kernels have nondegenerate systems of eigenvalues in which case
it is straightforward to explicitly compute the geometrical means of the eigen�
values as will be shown below� Note that whilst all of the examples below are
for convolution kernels� i�e� k�x� y	 � k�x� y	� there is nothing in the formula�
tions of the propositions themselves that requires this� When we consider the
d�dimensional case we shall see that with rotationally invariant kernels� degen�
erate systems of eigenvalues are generic� In section 
�� we will show how to
systematically deal with that case�

Let us consider the special case where ��j	j decays asymptotically with some
polynomial or exponential degree� In this case we can choose a sequence �aj	j
for which we can evaluate ��
	 explicitly� By the eigenvalues of a kernel k we
mean the eigenvalues of the the induced integral operator Tk�

Proposition �
 �Polynomial Decay� Let k be a Mercer kernel with eigen�
values satisfying �j � 
�i������ for some � � �� Then

	n�A� �� � ��	 � O
�
�lnn	�

�
�
�O�ln�� lnn�

�
� O�ln�

�
� n	�

An example of such a kernel is k�x	 � e�x� The proof is in the appendix�

Proposition �� �Exponential Decay� Suppose k is a Mercer kernel with
eigenvalues �j � 
�e���j��� for some �� 
 � �� Then

ln 	��n �A� �� � ��	 � O�ln
�
� n	

An example of such a kernel is k�x	 � �
��x�

� The proof is in the appendix�
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Proposition �� �Exponential Quadratic Decay� Suppose k is a Mercer
kernel with �j � 
�e���j���� for some �� 
 � �� Then

ln 	��n �A� �� � ��	 � O�ln
�
� n	�

An example of such a kernel is the Gaussian k�x	 � e�x� � The proof is in the ap�
pendix� We conclude this section with a general relation between exponential"
polynomial decay rates and orders of bounds on 	n�A	�

Proposition �� �Exponential�Polynomial decay� Suppose k is a Mercer
kernel with �j � 
�e��j

p
for some �� 
� p � �� Then

ln 	��n �A� �� � ��	 � O�ln
p

p�� n	

See the appendix for a proof sketch� This result is interesting but probably of
little theoretical relevance as most practical kernels do not exhibit these rapid
decay properties� �Recall the remarks at the beginning of Section ��	

Proposition �
 The rates given in propositions ��� �
� ��� and �� are tight�

Proof We start with proposition �
� Carl and Stephani ���� Proposition
������ show that the dyadic entropy numbers ek and the eigenvalues of the
corresponding diagonal operators on �p scale in an identical manner �in the
sense that they are members of the same Lorentz sequence space �s�t	� In our
case this means that they have the same polynomial rate of decay� Hence the
bound in Proposition �
 is tight for the operator A we assumed� Moreover from
proposition � we conclude that it is impossible to use another operator� say A�

that would have a faster rate of decay than A�
For the other propositions we have to do some more work� however it su�ces

to show tightness for proposition �� as the other cases are just a special case
thereof� Our proof relies on Equation �� of theorem � as this also provides a
lower bound on 	n�A	 in terms of the eigenvalues of A� Analogously to theorem
� one can show that

	n�A� �� � ��	 � inf
�as�s
�

p
�s�as	

s
���

sup
j�N

Ck

����p�s�as

�
s

���
��
n
� �
j �a�a� � � � aj	

�
j

���	
The ��"norm can be bounded below by ���a

�
� which we can set to 
� without

loss of generality �as choosing the �rst scaling factors does not in�uence the
rate at all	� For any operator with diagonal scaling coe�cients aj � e�

�
�
jp one

can �nd a constant �� such that

�a�a� � � � aj	
�
j � e

� �
�j



jP
s��

sp

� e�
��j
p

� ��
	

Now computing the supj in ���	 yields j � ���
� �
p�� ln

�
p�� n for some positive

constant �� and �nally for some �� � �

	n�A� �� � ��	 � ��Ck inf

�
	�����

e���

�

p�� ln
p

p�� n� ���	
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The inf
 is obtained for � � ��� and consequently for some ��� �� � �

	n�A� �� � ��	 � ��e
��	 ln

p
p�� n ���	

which gives the claimed rate� Note that due to proposition � it is impossible
to get any operator A with a faster rate of decay than the one for � � ����
This shows it was su�cient to consider only this speci�c parametric family of
operators A and therefore the rates are tight for arbitrary A�

� Higher Dimensions

Things get a little bit more complicated in higher dimensions� There are basi�
cally two ways that can be pursued for constructing kernels in R

d � R
d � R

with d � � if no particular assumptions on the data we are dealing with are
made� Firstly one could construct kernels by

k�x� y	 � k�x� � y�	� � � � � k�xd � yd	� ���	

This choice will usually lead to preferred directions in input space as the kernels
are not rotationally invariant in general� The second approach consists in setting

k�x� y	 � k�kx� yk��	� ��
	

This approach also leads to translationally invariant kernels which are also
rotationally invariant� In the following we will exploit this approach to com�
pute regularization operators and corresponding Green�s functions� It is quite
straightforward� however� to generalize our exposition to the rotational asym�
metric case� Now let us de�ne the basic ingredients needed for the further
calculations�

��� Basic Tools

The d�dimensional Fourier transform is de�ned by

F � L��R
d 	� L��R

d	 with F �f ���	 ��
�

���	d��

Z
Rd

e�ih��xif�x	dx� ���	

Then its inverse transform is given by

F�� � L��R
d	� L��R

d 	 with F���f ��x	 �
�

���	d��

Z
Rd

eih��xif��	d�� ���	

F can be shown to be an isometry on L��R
d 	�

Now introduce regularization operators P de�ned by

hPf� Pgi ��
Z
suppP ���

F �f ���	F �g���	

P ��	
d� ���	
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for some nonnegative function P ��	 converging to � for k�k � �� It can be
shown �
�� that for a kernel to be a Green�s function of P �P � i�e�

hPk�x	� Pk�x � x		i � k�x		� ���	

we need F �k���	 � P ��	� For radially symmetric functions� i�e� f�x	 � f�kxk�	�
we can explicitly carry out the integration on the sphere to obtain Fourier
transform which is also radially symmetric �see e�g� �

� ���	� namely

F �f ��k�k	 � ���H��r
�f�r	��k�k	� ���	

where � �� �
�d � � and H� is the Hankel transform over the positive real line�

The latter is de�ned by

H� �f ���	 ��

Z �

	
rf�r	J���r	dr� ��
	

Here J� is the Bessel function of the �rst kind de�ned by

J��r	 �� r����
�X
j�	

���	jr�j
��jj&'�j � � � �	

� ���	

Note that H� � H��
� � i�e� f � H� �H� �f �� �in L�	 due to the Hankel inversion

theorem �

��

��� Degenerate Systems

Computing the Fourier transform for a given kernel k gives us the continu�
ous spectrum� As pointed out in Section �� we are interested in the discrete
spectrum of integral kernels de�ned on X� This means that the eigenvalues
are de�ned on the grid �	Z

d with �	 � ���v� Assuming k�x	 is rotationally

invariant� so is K��	 and therefore also the eigenvalues �j � ���	
d
�K�j�		 as

shown in Lemma ��� Consequently we have degeneracies in the point spectrum
of the integral operator given by k �or kv respectively	 as all j�	 with equal
length will have the same eigenvalue� In order to deal with this case e�ciently
we slightly modify Theorem � for our purposes� The following theorem allows
proper account to be taken of the multiplicity of eigenvalues� and thus allows
the straight�forward calculation of the sought for entropy numbers�

Theorem �� Let �st	t � NN� be an increasing sequence with s	 � � and ��j	j �
RN be a non�increasing sequence of non�negative numbers with

�j � ��� for j � �� and �j � �st for st�� � j � st

and let
Dx � ���x�� ��x�� � � � � �jxj� � � �	 ���	

for x � �x�� x�� � � � � xj � � � �	 � �p be the diagonal operator from �p into itself�
generated by the sequence ��j	j� where � � p � �� Then for all n � N�

sup
t�N

n
� �
st ����� � � � �st	

�
st � 	n�D	 � � sup

t�N
n
� �
st ����� � � � �st	

�
st � ���	
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See the appendix for a proof�
This theorem allows us to obtain a similar result to corollary ��

Corollary �� �Entropy numbers for degenerate systems�
Let k�X � X � R be a Mercer kernel and let A be de�ned by 
�
� with the
additional restriction that the coe�cients aj have to match the degeneracy of
�j� Then

	n�A� �� � ��	 � inf
�aj�j 
�

p
�j�aj	j���

sup
t�N

�Ck

�����p�j�aj

�
j

����
��

n
� �
st �a�a� � � � ast	

�
st

��
	

This result by itself may not appear too useful� However this is exactly what we
need for the degenerate case �it is slightly tighter than the original statement�
as the sup e�ectively has to be carried out only over a subset of N	� Finally we
have to compute the degree of multiplicity that occurs for di�erent indices j� For
this purpose consider shells of radius r in R

d centered at the origin� i�e� rSd���
which contain a nonzero number of elements of Zd� Denote the corresponding
radii by rj and let n�rj� d	 be the number of elements on these shells� Observe
that n�r� d	 �� � only when r� � N� Thus

n�r� d	 �� jZd � rSd��j
N�r� d	 ��

P
f	���r
���Ng n��� d	�

���	

The determination of n�r� d	 is a classical problem which is completely solved
by the use of the ��series� �see e�g� ����	�

Theorem �� �Occupation numbers of shells� Let the formal power series
��x	 be de�ned by

��x	 ��

�X
j���

xj
�
� � � �

�X
j��

xj
�
� �
�	

Then

���x		d �
�X
j��

n�
p
j� d	xj � �
�	

This theorem allows one to readily compute n�r� d	 exactly� see the appendix
for some Maple code to do so� �Note that whilst there do exist closed form
asymptotic approximate formulae for n�r� d	 ���� p� ����� they are inordinately
complicated and of little use for our purposes�	

We can now construct an index of the eigenvalues which satis�es the required
ordering �at least for nonincreasing functions K��		 and we get the following
result�

Corollary �� �Radially Symmetric Systems on a Lattice�
Let k�X � X � R be a Mercer kernel with eigenvalues given by a radially
symmetric nonincreasing function on a lattice� i�e� �j � ��kjk	 with j � Zd and
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let A be de�ned by 
�
� with the additional restriction that the coe�cients ai
have to match the degeneracy of �j� Then

	n�A� �� � ��	 �
inf

�aj�j


�p
�j

aj

�
j

�����d
supt�N �Ck

�����

p

�j
aj

�
j

�����
����d

n
� �
N�rt�d�

�Qj
q�� a�rq	

n�rq �d�
� �
N�rt�d� �

�
�	

Note that this result� although it may seem straightforward� cannot be obtained
from corollary � directly as there the sup would have to be carried out over N
instead of �N�rt� d		t� The di�erent formulation allows us to compute bounds
on the entropy numbers more easily�

��� Bounds for Kernels in R
d

Let us conclude this section with some examples of the eigenvalue sequences
for kernels typically used in SV machines� These can then be used to evaluate
the right hand side in corollary ��� Recall that � � d

� � �� First we have to
compute the Fourier$Hankel transform for the kernels�

Example �	 �Gaussian RBFs� For Gaussian rbfs in d dimensions we have

k�r	 � ��de�
r�

��� and correspondingly

F �k���	 � �����dH�

�
r�e�

r�

���

�
��	

� �����������d��e�
����

�

� e�
����

�

or in other words � the Fourier transform of a Gaussian is a Gaussian�

Example �
 �Exponential RBFs� In the case of k�r	 � e�ar we get

F �k���	 � ���H�

�
r�e�ar

�
��	

� ���������a��
�
�'
�
� � �

�

� �
a� � ��

���� �
�

� �
d
� a��

�
�'
�
d
� � �

� �

�a� � ��	
d��
�

i�e� in the case of d � � we recover the damped harmonic oscillator 
in frequency
domain�� In general we get a decay in terms of the eigenvalues like ���d����
Moreover we can conclude from this that the Fourier transform of k� viewed

itself as a kernel� i�e� k�r	 �
�
� � r�

�� d��
� � yields the initial kernel as its

corresponding power spectrum in Fourier domain�

Example �� �Damped Harmonic Oscillator� Another way to generalize
the harmonic oscillator� this time in a way� that k does not depend on the
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dimensionality d is to set k�r	 � �
a��r� � Following �
�� 
section ����� we get

F �k���	 � ���H�

�
r�

a� � r�

�
��	

� ���a�K���a	

where K� is the Bessel function of the second kind� de�ned by 
see �����

K��x	 �

Z �

	
e�x cosh t cosh��t	dt� �
�	

It is possible to upper bound F �k� via

K��x	 �

r
�

�x
e�x

�
�p��X
j�	

��x	�j
'
�
� � j � �

�

�
j&'

�
� � j � �

�

� � � � ��x	�p '
�
� � p� �

�

�
j&'

�
� � p� �

�

�
�
�
�

	

with p � � � �
� and � � ��� �� ���� eq� ���
������ As one can see the term in

the brackets ��� converges to � for x � � and we get exponential decay of the
eigenvalues�

Using Theorem ��� Corollary �� and Remark �� one may compute the en�
tropy numbers numerically for a particular kernel and a particular set of pa�
rameters� This may seem unsatisfactory from a theoretician�s point of view�
However� as the ultimate goal is to use the obtained bounds for model selec�
tion� it is desirable to obtain as tight bounds �especially in the constants	 as
possible� Hence if much more precise bounds can be obtained by some not too
expensive numerical calculation it is de�nitely worth while to use those instead
of a theoretically nice but not su�ciently tight upper bound� The computa�
tional e�ort to calculate these quantities is typically negligible in comparison
to training the actual learning machine�

Notwithstanding the above� in order to give a feeling for the e�ect of the
decay of the Fourier transform of the kernel on the entropy numbers of the A
operator� we conclude with the following general result� the proof of which is
relegated to the appendix�

Proposition �� �Polynomial exponential decay in Rd� For kernels k��� �	
in Rd � Rd with ���	 � 
�e��k�kp with �� 
� p � � we have

ln 	��n �A� �� � ��	 � O�ln
p

p�d n	

� Conclusions

We have shown how to connect properties known about mappings into feature
spaces with bounds on the covering numbers� Our reasoning relied on the fact
that this mapping exhibits certain decay properties to ensure rapid convergence
and a constraint on the size of the weight vector in feature space� This means
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that the corresponding algorithms have to restrict exactly this quantity to en�
sure good generalization performance� This is exactly what is done in Support
Vector machines�

The actual application of our results� perhaps for model selection using
structural risk minimization� is somewhat involved� Below we outline one pos�
sible path� As said before� the viewpoint in this paper is new� and perhaps
there will be re�nements soon forthcoming which would make the codi�cation
of our existing results into a single generalization bound premature�

��� A Possible Procedure to use the Results of this Pa

per

Choose k and � The kernel k may be chosen for a variety of reasons� which
we have nothing additional to say about here� The choice of � should
take account of the discussion in Section ��

Choose the period v of the kernel One suggested procedure is outlined in
Section ��

Bound 	n�A	 This can be done using Corollary � �for the case d � �	 or
Corollary �� or �� for the case d � �� Some examples of this sort of
calculation are given in Section ��

Bound 	n�T 	 Using Theorem ���

Take account of the ��b� The key observation is that given a class F with
known Nm�	�F	� one can bound Nm�	�F�	 as follows� �Here F� �� ff �
b� f � F� b � Rg�	 Suppose V� is an 	�cover for F and elements of F� are
uniformly bounded by B �this implies a limit on jbj as well as a uniform
bound on elements of F	� Then

V �
� ��

B���
j��B��

V� � j	

is an 	�cover for F� and thus Nm�	�F�	 � �B
� N

m�	�F	� Observe that this
will only be �noticeable� for classes F with very slowly growing covering
numbers �polynomial in ��		�

Take account of the loss function using Lemma � for example�

Plug into a uniform convergence result See the pointers to the literature
and the example in Section 
�

��� Future Work

One might think of similar algorithms �e�g� weight decay	 which place a similar
constraint not on the weight vector in feature space but� say� in input space� It
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seems promising to explore this direction in more detail within the framework
presented here�

The results of the present paper hinge on the measurement of the size of
the weight vector w by a �� norm� In ���� we show the e�ect of di�erent norms
for measuring the size of w� as well as presenting a number of related results�
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Proofs of Results in Section � �	

A Proofs of Results in Section 


Proof �Proposition �
� We will make use of Corollary �� In this case all
sequences �aj	j � �j�

�
� 	j with � � � � � lead to an admissible scaling property�

Here we have ������
�p

�j

aj

�
j

������
��

� 


�����j ������

�
j

����
��

� 
���� � � �	 �
�	

where ���	 is Riemann�s zeta function� Moreover we can upper bound ���	 by
��� � �

x	 � x� � where � is Euler�s constant� The next step is to evaluate the
expression

�a�a� � � � aj	
�
j �

�
jY

s��

s�
�
�

� �
j

� �j&	
� �

�j �
�	

Hence we get

	n � �Ck
 inf

��	���

sup
j�N



�

�� �
� �

�
n�

�
j �j&	�

�
�j �
�	

Replacing supj�N in �
�	 by supj�
���� and rewriting the expressions as expo�
nentials we obtain

	n � �Ck
 inf

��	���

sup
j�
����



�

�� �
� �

�
e
� �
j
lnn� �

�j
ln ��j���

�

	

One can check �by making use of an asymptotic expansion of '�x		 that

�

�j
ln'�j � �	 � �

�
�ln j � �	� � ln ��


j
� �
�	

Hence we can upper"bound the exponent �as we have to compute the sup	 in
�

	 by

��

j
lnn� �

�
� �ln j � �	� ��ln ��	


j
� ���	

The maximum is obtained for j � � lnn

 � ln����

� and hence

	n � �Ck
 inf

��	���



�

�� �
� �

�

� lnn

�
�

�

�
ln���	

�� �
�

� ���	

The inf is approximately obtained for

� � �� 


� ln� Z
with Z �

� lnn

�
�

�

�
ln ��

and consequently � � � for n��� Substitution concludes the proof�
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Proof �Proposition ��� By using the same argument as in the example above�
for sequences of exponential decay� i�e� �aj	j � �e�

�
�
�j���	j with � � ��� �	 we

get ������
�p

�j

aj

�
j

������
��

� 


�����e ���� �j � �	
�
j

����
��

� 

�

�� e
��
���	

and

�a�a� � � � aj	
�
j � e

� �
�j



jP
s��

�s���
� e�

j��
�


 ���	

Hence we get

	n � �Ck
 inf

��	���

sup
j�N

n�
�
j

�

�� e
��
e�

j��
�


 ��
	

In order to compute the inf sup we will make some approximations� The �rst
step to replace sup

j�N
by sup

j�R�
� As we only want to compute an upper bound this

is a useful assumption� The maximum is achieved at j �
q

� lnn

 � Plugging j

back in and rearranging terms yields

	n � �Ck
 inf

��	���

e�
p
� lnn
� �

�

�� e
��
���	

This concludes the proof as the proposition holds for any � � ��� �	�

Remark �� �Computing inf

��	���

� Basically there are two options � either to

numerically compute inf of 
�
�� or to use approximations� For small lnn� i�e�
lnn � �� setting � � ��� is a good estimate� For lnn � �� we can �nd the
approximate minimum of 
�
� for

e
�� �

p
� lnn�p�p
� lnn�

p
�
� ��

r
��

lnn
���	

This will determine our particular choice of � 
although it may not be optimal��

From this it follows that � � ��
q

��
lnn � i�e� � � � for n��� This leads to

	n � �C


r
lnn

��
e
�
�
�
p

�� lnn�p�� lnn ���	

This bound has the same rate but possibly better constant factors�

For the proof of Proposition �� we need the following Lemma�

Lemma �
 �Summation and Integration in R�� Suppose f � R � R is a
nonincreasing function� Then the following inequality holds for any a � ZZ �

a
f�x	dx �

�X
n�a

f�n	 �
Z �

a��
f�x	dx� ��
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Proof The proof relies on the fact that

f�n	 �
Z n��

n
f�n	dn � f�n� �	

due to the monotonicity of f and a decomposition of the integral
�R
	

�
�P
n�	

n��R
n

�

The lemma is a direct consequence thereof�

Proof �Proposition ��� Choose �aj	j � �e�
�
�
�j����	j with � � ��� �	 analo�

gously to the two cases above� This leads to

������
�p

�j

aj

�
j

������
��

� 


�
� �X

j�	

e�
���j
�

�
A

�
�

� 


s
� �

r
�

���� �	
���	

due to Lemma �
 and

�a�a� � � � aj	
�
j � e

� �
�j



jP
s��

�s����
� e�

�
��
�j�����j���� ����	

Putting everything together yields

	n � �C
 inf

��	���

sup
j�N

n�
�
j

s
� �

r
�

��� � �	
e�

�
��
�j�����j���� ����	

Now we will upper bound ����	� For evaluating the sup let us distinguish two
cases�

For the sup being obtained at j � � we get

	n � �C
n��


� �

r
�

��

�
� ����	

thus ln 	�� � O�lnn	 for j � �� For j � � the following expression is an upper
bound for 	n

	n � �C
 inf

��	���

sup
j�
����

n
� �
j

s
� �

r
�

��� � �	
e�

	�


j� � ����	

with � � ��
 as �
���j � �	��j � �	 � �

��j
� for all j � ����	� Computing the

supj�
���� leads to

j �



� lnn

��

� �
�

���
	

and therefore

	n � �C
 inf

��	���

s
� �

r
�

���� �	
e�

�
�
���
�

�
� ln

�
� n ����	
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The overall bound on 	n is bounded by the maximum of the bounds obtained
for j � � and j � �� As lnn

�
� decays more slowly than lnn the case of j � �

dominates for large n and thus

ln 	��n � O�ln��� n	 ����	

This proves the scaling behaviour for quadratic polynomial decay as the given
rate holds for any particular �

Note that for su�ciently large lnn we can let � get arbitrarily close to � and
thus obtain a better rate�

Remark �� �Computing inf

��	���

� Again we have the choice of either numer�

ically evaluating 
��
� or computing an approximate solution by either setting
� � ��� or making the assumption of large lnn� In the latter case we obtain
an approximately optimal solution for

� � �� �

�



�����

�� ln� n

����

which converges to � for lnn���

Proof �Proposition ����sketch only� Analogously to before we use a series
�aj	j � e�
��j

p
� Then we bound������

�p
�j

aj

�
j

������
��

� 


�
� �X

j�	

e�
���j
p

�
A

�
�

� 


s
� �

'���p	

p��� �	��p
����	

and

�a�a� � � � aj	
�
j � e

� �
�j



jP
s��

sp

� e�
�j
p

���
	

for some positive number �� And again computing the supk�
���� we get

k � �� ln
�

p�� n for some ��� and then �nally resubstitution yields the claimed
rate of convergence for any � � ��� �	 which proves the theorem�

B Proof of Theorem ��

Proof The �rst part of the inequality follows directly from theorem � as it is
a weaker statement than the original one� We prove the second part by closely
mimicking the proof in ���� p� ���� We de�ne

��n	 �� 
 sup
t�N

n
� �
st ����� � � � �st	

�
st ����	

and show that for all n there is an index sj with �sj�� � ��n�
� � For this purpose

choose an index r such that n � �sj�� and thus � � �n����sj���� Moreover we
have

�sj�� � ����� � � � �sj��	
�

sj�� ����	



Proof of Theorem �	 ��

because of the monotonicity of ��j	j and �nally

�sj�� � �n����sj�������� � � � �sj��	
�

sj�� � ����	

Using the de�nition of ��n	 we thus conclude �sj�� � ��n	�
� If this happens
to be the case for �� we have 	n�D	 � �� which proves the theorem�

If this is not the case there exists an index sj such that �sj�� � ��n	�
 � �sj �
Hence the corresponding sectional operator

Dsj � �p � �p with
Dsj �x�� x�� � � � � xsj � xsj��� � � �	 � ���x�� ��x�� � � � � �sjxsj � �� �� � � �	

����	

is of rank sj and the image Dsj �Up	 of the closed unit ball Up of �p is isometric

to the subset D�sj��U
�sj�
p 	 of �

sj
p � In any case Dsj �Up	 is a precompact subset of

�p� So let y�� y�� � � � � yN be a maximal system of elements in Dsj �Up	 with

kyj � y��k � ��n	�� for j �� ��� ����	

The maximality of this system guarantees that

Dsj �Up	 �
N�
j��

 
yj �

��n	

�
Up

!
���
	

and thus 	N �Dsj 	 � ��n	��� In order to get an estimate for 	N �D	 we split the
operator D into two parts D � �D �Dsj 	 �Dsj which allows us to bound

	N �D	 � kD �Dsjk� 	N �Dsj 	� ����	

Using kD �Dsjk � �sj�� � ��n	�
 and the bound on 	N �Dsj 	 we arrive at

	N �D	 � �



��n	� ����	

The �nal step is to show that N � n as then by substituting in the de�nition
of ��n	 into ����	 yields the result� This is again achieved by a comparison
of volumes� Consider the sets fyj � ���n	�
	U

sj
p g as subsets of the space �

sj
p

which is possible since yj � Dsj �Up	 and Dsj �Up	 � D�sj��U
sj
p 	� These sets are

obviously pairwise disjoint� On the other hand we have

N�
j��

 
yj �

��n	



U
sj
p

!
� D�sj��U

sj
p 	 � ��n�

� U
sj
p 	 � �D�sj��U

sj
p 	 ����	

as ��n	�
 � ��� Now a comparison of the d�dimensional Euclidean volumes
vold provides

N



��n	




�sj

volsj �U
sj
p 	 � �sj���� � � � �sjvolsj �U sj

p 	 ���
	

and therefore N � �
���n		sj���� � � � �sj � Using the de�nition of ��n	 this yields
N � n�



Proof of Proposition �� ��

C Proof of Proposition �	

Proof We will completely ignore the fact that we are actually dealing with a
countable set of eigenvalues on a lattice and replace all summations by integrals
without further worry� Of course this is not accurate but still will give us the
correct rates for the entropy numbers�

Denote ��) �� ����v	
d
� the size of a unit cell� i�e� ) � �v����		

d
� the

density of lattice points in frequency space as given in section �� Then we get
for in�nitesimal volumes dV and numbers of points dN in frequency space

dV � Sd��rd��dr and therefore dN � )Sd��rd��dr ����	

�here Sd�� denotes the volume of the d� � dimensional unit sphere	 leading to

N�r	 �
�

d
)Sd��rd� ����	

We introduce a scaling operator whose eigenvalues decay like a��	 � e�
�
�
k�kp

for � � ��� �	� It is straightforward to check that all these values lead to both
useful and admissible scaling operators� Now we will estimate the separate
terms in �
�	�

����

p

�i
ai

�
i

����
�

��

��

Z
dN��	

���	

a���	
� Sd��)

Z �

	
rd��
�e����
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p

� Sd��)
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d
p �



d

p

�
p�� ����	

Next we have

ln
�
n
� �
N�r�

�
� � d

)Sd��rd	
lnn ����	

and

ln
�
a� � a� � � � aN�r�
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N�r�X
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lnaj
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�
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This leads to

	n � �Ck


r
Sd����

�
d
p

�
p inf


�
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� d
�p sup

r�R�
exp



� d

)Sd��rd
lnn� �

�
d

d�pr
p

�
�

����	
Computing the supr�R� yields

r �
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�)Sd��
�d� p	d

p
lnn
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Maple code to compute n�r�d
 ��

and therefore

	n � �Ck


r
Sd����

�
d
p

�
p inf


�
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d
�p exp

�
�
��
�
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�d�p�d

p

lnn

)Sd��

� p
d�p

�
�

����	
Already from this expression one can observe the rate bounds on 	n� What
remains to be done is to compute the inf
 � This can be done by di�erentiating
����	 w�r�t� � � For increased clarity of exposition de�ne

Tn ��



�d� p	d

p

lnn

)Sd��

� p
d�p

���
	

which leads to the optimality condition on �

��� �	��
p

d�p �
d� p

�Tnp
�

d
d�p with � � ��� �� ����	

which can be solved numerically�

D Maple code to compute n�r�d�

� This code defines a function t where

� t�m�d� is number of points on a sphere of radius�	
m from Z�d

h�
n��eval�
if
�isolve�m�	
n�m�
NULL���
if
�n
����	������

powseries�powcreate��theta�n�
h�n���

t�
�m�d���

coeff�convert�powseries�tpsform��powseries�evalpow��theta�d��

x�m����polynom��x�m��
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