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Introduction 1

Abstract

We derive new bounds for the generalization error of kernel machines,
such as support vector machines and related regularization networks by
obtaining new bounds on their covering numbers. The proofs make use
of a viewpoint that is apparently novel in the field of statistical learning
theory. The hypothesis class is described in terms of a linear operator
mapping from a possibly infinite dimensional unit ball in feature space
into a finite dimensional space. The covering numbers of the class are
then determined via the entropy numbers of the operator. These num-
bers, which characterize the degree of compactness of the operator, can
be bounded in terms of the eigenvalues of an integral operator induced by
the kernel function used by the machine. As a consequence we are able
to theoretically explain the effect of the choice of kernel function on the
generalization performance of support vector machines.

Index terms: e-entropy, covering numbers, statistical learning theory,
support, vector machines, linear operators.

1 Introduction

In this paper we give new bounds on the covering numbers for kernel machines.
This leads to improved bounds on their generalization performance. Kernel ma-
chines perform a mapping from input space into a feature space (see e.g. [1, 30]),
construct regression functions or decision boundaries based on this mapping,
and use constraints in feature space for capacity control. Support Vector (SV)
machines, which have recently been proposed as a new class of learning al-
gorithms solving problems of pattern recognition, regression estimation, and
operator inversion [47] are a well known example of this class. We will use SV
machines as our model of choice to show how bounds on the covering numbers
can be obtained. We outline the relatively standard methods one can then use
to hence bound their generalization performance. SV machines, like most kernel
based methods, possess the nice property of defining the feature map in a man-
ner that allows its computation implicitly at little additional computational
cost. Our reasoning also applies to similar algorithms such as regularization
networks [14] or certain unsupervised learning algorithms [38]. Let us now take
a closer look at SV machines. Central to them are two ideas: capacity control
by maximizing margins, and the use of nonlinear kernel functions.

Capacity control. In order to perform pattern recognition using linear hyper-
planes, often a maximum margin of separation between the classes is sought
for, as this leads to good generalization ability independent of the dimension-
ality [48, 47, 41]. It can be shown that for separable training data

(X1,91)s -+ s (Xim» Ym) € RY x {il}a (1)

this is achieved by minimizing ||w||2 subject to the constraints y;((w,x;)+b) >
1for j =1,...,m, and some b € R. The decision function then takes the form

f(x) = sgn((w,x) +b). (2)
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Similarly, a linear regression
f(x)=(w,x) +b (3)
can be estimated from data

(Xlayl)a'--a(xmaym) ERd x R (4)

by finding the flattest function which approximates the data within some margin
of error: in this case, one minimizes ||wl|y subject to |f(x;) — y;| < €, where
the parameter £ > 0 plays the role of the margin, albeit not in the space of the
inputs x, but in that of the outputs y. The analogy to pattern recognition is
somewhat loose, and there exist alternative ways of introducing a margin (e.g.
in the space R™ of all outputs y1,...,Ym, [53]).

In both cases, generalizations for the nonseparable or nonrealizable case
exist, using various types of cost functions [12, 47, 42].

Nonlinear kernels. In order to apply the above reasoning to a rather general
class of nonlinear functions, one can use kernels computing dot products in
high-dimensional spaces nonlinearly related to input space [1, 8]. Under cer-
tain conditions on a kernel k, to be stated below (Theorem 4), there exists a
nonlinear map & into a reproducing kernel Hilbert space F' (see e.g. [36]) such
that k computes the dot product in F, i.e.

k(x,y) = (@(x), 2(y)) r- (5)

Given any algorithm which can be expressed in terms of dot products exclu-
sively, one can thus construct a nonlinear version of it by substituting a kernel
for the dot product. Examples of such machines include SV pattern recognition
[8], SV regression estimation [47], and kernel principal component analysis [38].
By using the kernel trick for SV machines, the maximum margin idea is
thus extended to a large variety of nonlinear function classes (e.g. radial basis
function networks, polynomial networks, neural networks), which in the case of
regression estimation comprise functions written as kernel expansions

m

f) = ajk(xj,x) +b, (6)

1=1

with a; € R, 7 = 1,...,m. It has been noticed that different kernels can be
characterized by their regularization properties [43]: SV machines are regular-
ization networks minimizing the regularized risk Ryeg[f] = Remplf] + 31| Pf]%
(with a regularization parameter A\ > 0, and a regularization operator P) over
the set of functions of the form (6), provided that k¥ and P are interrelated
by k(xs,x:) = ((Pk)(xs,), (Pk)(x¢,-)). To this end, k is chosen as Green’s
function of P*P where P* is the adjoint of P.

This provides insight into the regularization properties of SV kernels. How-
ever, it does not completely settle the issue of how to select a kernel for a
given learning problem, and how using a specific kernel might influence the
performance of a SV machine.
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Outline of the paper

In the present work, we show that properties of the spectrum of the kernel can
be used to make statements about the generalization error of the associated
class of learning machines. Unlike in previous SV learning studies, the kernel
is no longer merely a means of broadening the class of functions used, e.g. by
making a nonseparable dataset separable in a feature space nonlinearly related
to input space. Rather, we now view it as a constructive handle by which we
can control the generalization error.

A key feature of the present paper is the manner in which we directly bound
the covering numbers of interest rather than making use of a Combinatorial di-
mension (such as the VC-dimension or the fat-shattering dimension) and sub-
sequent application of a general result relating such dimensions to covering
numbers. We bound covering numbers directly by viewing the relevant class of
functions as the image of a unit ball under a particular compact operator. A
general overview of the method is given in Section 3.

The remainder of the paper is organized as follows. We start by introduc-
ing notation and definitions (Section 2). Section 4 formulates generalization
error bounds in terms of covering numbers. Section 5 contains the main result
bounding entropy numbers in terms of the spectrum of a given kernel. The
results in this paper rest on a connection between covering numbers of function
classes and entropy numbers of suitably defined operators. In particular we de-
rive an upper bound on the entropy numbers in terms of the size of the weight
vector in feature space and the eigenvalues of the kernel used. Section 6 shows
how to make use of kernels such as k(z) = e ** which do not have a discrete
spectrum. Section 7 presents some results on the entropy numbers obtained
for given rates of decay of eigenvalues and 8 shows how to extend the results
to several dimensions. The concluding section (Section 9) indicates how the
various results in the paper can be glued together in order to obtain overall
bounds on the generalization error.

We do not present a single master generalization error theorem for three key
reasons: 1) the only novelty in the paper lies in the computation of covering
numbers themselves; 2) the particular statistical result one needs to use depends
on the specific problem situation; 3) many of the results obtained are in a form
which, whilst quite amenable to ready computation on a computer, do not
provide much direct insight by merely looking at them, except perhaps in the
asymptotic sense, and finally 4) some applications (such as classification) where
further quantities like margins are estimated in a data dependent fashion, need
an additional luckiness argument [40] to apply the bounds.

Thus although our goal has been theorems, we are ultimately forced to resort
to a computer to make use of our results. This is not necessarily a disadvan-
tage — it is a both a strength and a weakness of Structural Risk Minimization
(SRM) [49] that a good generalization error bound is both necessary and suffi-
cient to make the method work well. It is our expectation that the refined (and
significantly more tight) covering number bounds obtainable by our methods
will be exploitable in SRM algorithms — they could be used for example for
model selection. If one is running a computer program anyway, there is lit-
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tle point in expending a large effort to make the generalization error bounds
directly consumable in a pencil and paper sense.

2 Definitions and Notation

For d € N, R denotes the d-dimensional space of vectors x = (z1,...,z4).
We define spaces Eg as follows: as vector spaces, they are identical to R?, in
addition, they are endowed with p-norms: for 0 < p < oo, Hleg = ||x[l, =

(oL, |mj|p)1/”; for p = o0, Xl = [X]loo = maxj_i_4|z;|. Note that a
different normalization of the the Eg norm is used in some papers in learning
theory (e.g. [45]).

Given m points Xi,...,X,, € Eg, we use the shorthand X™ = (x/,...,x,.).

Suppose J is a class of functions defined on R?. The ¢¢ norm with respect
to X™ of f € JF is defined as ||f||xm := max;—1 _m |f(x:)].

Given some set X, a measureoou on X, some 1 < p < oo and a function
f:X = K we define || f]|,xx = ([ |f(m)|pd,u(x))1/p if the integral exists and
1 fll 2o (x,x) = esssupgex |f(z)]. For 1 < p < oo, we let Ly(X,K) := {f: X —
K|l fllz, (xx) < oo} We let Ly(X) := Ly(X, R).

Let £(E, F) be the set of all bounded linear operators T' between the normed
spaces (E, ||-||g) and (F, ||-||F), i-e. operators such that the image of the (closed)
unit ball

U :={z € E:|z|g <1} (7)

is bounded. The smallest such bound is called the operator norm,

1T := sup || Tz F. (8)
zeUgp

The nth entropy number of a set M C E, for n € N, is

€n(M) :=inf{e >0 : there exists an e-cover for M in F

containing n or fewer points} 9)
The entropy numbers of an operator T € £(E, F') are defined as
en(T) := e, (T (Ug)). (10)

Note that e1(T) = ||T||, and that €,(T) certainly is well defined for all n € N if
T is a compact operator, i.e. if T(Ug) is compact. The dyadic entropy numbers
of an operator are defined by

en(T) :=€n1(T), neN; (11)

similarly, the dyadic entropy numbers of a set are defined from its entropy
numbers. A very nice introduction to entropy numbers of operators is [11].
The e-covering number of F with respect to the metric d denoted N(e,F,d) is
the size of the smallest e-cover for J using the metric d.
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In this paper, £ and F will always be Banach spaces, i.e. complete normed
spaces (for instance Eg spaces). In some cases, they will be Hilbert spaces H,
i.e. Banach spaces endowed with a dot product (-,-)y giving rise to its norm
via ||z||g = v/{z, ).

By log and In, we denote the logarithms to base 2 and e, respectively. By
i, we denote the imaginary unit i = v/—1, k will always be a kernel, and d and
m will be the input dimensionality and the number of examples

(xlayl)a"'a(xmaym) eRd XR? (12)

respectively. We will map the input data into a feature space via a mapping ®.
We let x := &(x).

Operator Theory Methods for Entropy Numbers

In this section we briefly explain the new viewpoint implicit in the present paper.
With reference to Figure 1, consider the traditional viewpoint in statistical
learning theory. One is given a class of functions ¥, and the generalization
performance attainable using JF is determined via the covering numbers of JF.
More precisely, for some set X, and x; € X for i = 1,...,m, define the e-Growth
function of the function class F on X as

N™(e,F):= sup N(e, F,0X"), (13)

X1,y Xm €X

where N(e, T, ¢X") is the e-covering number of F with respect to £X™. Many
generalization error bounds can be expressed in terms of N (e, F). An example
is given in the following section.

The key novelty in the present work solely concerns the manner in which
the covering numbers are computed. Traditionally, appeal has been made to
a result such as the so-called Sauer’s lemma (originally due to Vapnik and
Chervonenkis). In the case of function learning, a generalization due to Pollard
(called the pseudo-dimension), or Vapnik and Chervonenkis (called the VC-
dimension of real valued functions), or a scale-sensitive generalization of that
(called the fat-shattering dimension) is used to bound the covering numbers.
These results reduce the computation of N™(e,F) to the computation of a
single “dimension-like” quantity. An overview of these various dimensions, some
details of their history, and some examples of their computation can be found
in [5].

Note that the ’plain’ VC dimension is not appropriate in SV regression at
all as can be seen in the following: Denote r an arbitrary positive number and
C € R" a compact set. Consider the class of functions

F:=Xf:f= Zaik(xi,-) with z; € C,Zaiajk(xi,xj) <r (14)
i 0]

We show that F' has infinite VC dimension by showing that any arbitrary
set X = {z1,...,2¢} C C of size £ can be shattered. Since [28] the matrix
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[k(xi,z;)];; has full rank for Gaussian rbf-kernels. For arbitrary {yi,...y¢} €
{—1,1} there exists a function f(-) = ), a;k(z;,-) with f(z;) = y;. Rescaling
f finally yields some f € F which proves the statement.

In the present work, we view the class F as being induced by an operator
T}, depending on some kernel function k. Thus J is the image of a “base
class” G under T,. The analogy implicit in the picture is that the quantity
that matters is the number of e-distinguishable messages obtainable at the
information sink. (Recall the equivalence up to a constant factor of packing
and covering numbers.) In a typical communications problem, one tries to
maximize the number of distinguisable messages (per unit time), in order to
maximize the information transmission rate. But from the point of view of the
receiver, the job is made easier the smaller the number of distinct messages
that one needs to be concerned with decoding. The significance of the picture
is that the kernel in question is exactly the kernel that is used, for example,
in support vector machines. As a consequence, the determination of N (e, F)
can be done in terms of properties of the operator Tj,. The latter thus plays
a constructive role in controlling the complexity of F and hence the difficulty
of the learning task. We believe that the new viewpoint in itself is potentially
very valuable, perhaps more so than the specific results in the paper. A further
exploitation of the new viewpoint can be found in [53]. There are in fact a
variety of ways to define exactly what is meant by T}, and we have deliberately
not been explicit in the picture. We make use of one particular T}, in this paper.
A slightly different approach is taken in [53].

We conclude this section with some brief historical remarks.

The concept of the metric entropy of a set has been around for some time.
It seems to have been introduced by Pontriagin and Schnirelmann [33] and was
studied in detail by Kolmogorov and others [24]. The use of metric entropy to
say something about linear operators was developed independently by several
people. Prosser [34] appears to have been the first to make the idea explicit.
He determined the effect of an operator’s spectrum on its entropy numbers.
In particular, he proved a number of results concerning the asymptotic rate
of decrease of the entropy numbers in terms of the asymptotic behaviour of
the eigenvalues. A similar result is actually implicit in section 22 of Shannon’s
famous paper [39], where he considered the effect of different convolution op-
erators on the entropy of an ensemble. Prosser’s paper [34] led to a handful of
papers (see e.g. [35, 19, 3, 26]) which studied various convolutional operators.
A connection between Prosser’s e-entropy of an operator and Kolmogorov’s e-
entropy of a stochastic process was shown in [2]. Independently, another group
of mathematicians including Carl and Stephani [11] studied covering numbers
[46] and later entropy numbers [32] in the context of operator ideals. (They
seem to be unaware of Prosser’s work — see e.g. [9, p. 136].)

Connections between the local theory of Banach spaces and uniform con-
vergence of empirical means has been noted before (e.g. [31]). More recently
Gurvits [18] has obtained a result relating the Rademacher type of a Banach
space to the fat-shattering dimension of linear functionals on that space and
hence via the key result in [4] to the covering numbers of the induced class.
We will make further remarks concerning the relationship between Gurvits’ ap-
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proach and ours in [53]; for now let us just note that the equivalence of the
type of an operator (or of the space it maps to), and the rate of decay of its
entropy numbers has been (independently) shown by Kolchinskii [22, 23] and
Defant and Junge [13, 20]. Note that the exact formulation of their results
differs. Kolchinskii was motivated by probabilistic problems not unlike ours.

4 Generalization Bounds via Uniform Convergence

The generalization performance of learning machines can be bounded via uni-
form convergence results as in [50, 49]. A recent review can be found in [5]. The
key thing about these results is the role of the covering numbers of the hypoth-
esis class — the focus of the present paper. Results for both classification and
regression are now known. For the sake of concreteness, we quote below a re-
sult suitable for regression which was proved in [4]. Let P, (f) := = > | f(x;)

—m
denote the empirical mean of f on the sample x1,...,Xp,.

Lemma 1 (Alon, Ben—David, Cesa—Bianchi, and Haussler, 1997) LetJ
be a class of functions from X into [0, 1] and let P be a distribution over X. then,
for all e > 0 and all m > 6%,

Pr{sup|Pm(f) - P(f)| > e} <12m BN (,5,657) ]| e m (15)
fexr

where Pr denotes the probability w.r.t. the sample x1,...,Xy, drown i.i.d. from
P, and E the expectation w.r.t. a second sample X™ = (iir, . ,}_c;m) also drawn
i.5.d. from P.

In order to use this lemma one usually makes use of the fact that for any P,
E [N(e, 7, eg’gm)} < N™(e, F). (16)

The above result can be used to give a generalization error result by applying it
to the loss-function induced class. The following Lemma, which is an improved
version of [7, Lemma 17], is useful in this regard:

Lemma 2 Denote JF a set of functions from X to [a,b] with a < b, a,b € RU%o0
and | : R — RI a loss function. Let z := (xi,Yi) 71y Lrlzy = 1(f(x5) — y3),
Uplz = (Lpla)7iys Uola o= {lfls: f € T} and N(e,l|5) := N(e,l5]2, £5,). Then the
following two statements hold:

1. Suppose | satisfies the Lipschitz—condition
1€) =1 <ClE=¢ for all £, ¢ € [a—b,b—al. (17)
Then for all e >0

€
N(e,1|,) < N(L 7, 18
o N(eoll) < max N (5. 5) (18)
and em
Z < ) X T . 1
ey N ) < X (T T ) 09)
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2. Suppose that for some C,C > 0, | satisfies the “approzimate Lipschitz—
condition”

1(6) — 1(¢") < max(C|€ — €|, C) for all £,€' € [a—b,b—a] (20)
then for all e > C/C

€
) < — Flx) . 21
ze(agi?fb])m Nle lla) < Q%N<C 7 ) (21)

Proof We show that, for any sequence z of (x,y) pairs in X X [a,b] and
any functions f and g, if the restrictions of f and g to x are close, then the
restrictions of [y and [, to z are close. Thus, given a cover of F|x we can
construct a cover of Ly, that is no bigger. For part 1 we get:

LIS Hg05) — )~ HFG5) —w)| < o D IHglg i) ~ 15 )]
7=1 7=1
< %qu(xj)_f(xjﬂ
7=1

o
= llgX™) = FXT)lep
< COllgX™) = fF(X™) e -
In the second case we proceed similarly

m

S Hoes —u) LG — )| < o> max(latx;) — 7], E/0)
j=1

1
m |4
Jj=1

Ce fore>C/C.

IN

The second case can be useful, when the exact form of the cost function is not
known, happens to be discontinuous or is badly behaved in some other way.!
It shows how down to a scale C /C' statements about the covering numbers
of the loss-function induced class can be made. Applying the result above to
polynomial loss leads to the following corollary:

Corollary 3 Let the assumptions be as above in lemma 2. Then for loss func-
tions of type

1
l(in) = 1—977” with p > 1 (22)
we have C' = (b—a)®V, in particular C = (b— a) for p =2 and therefore

€
z < 9 X 2
e M) < N (G o) %

!The two cases could be combined into one by writing the conditions in terms of the
modulus of continuity. For the sake of clarity , however, we refrained from doing so.
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One can readily combine the uniform convergence results with the above re-
sults to get overall bounds on generalization performance. We do not explicitly
state such a result here since the particular uniform convergence result needed
depends on the exact set-up of the learning problem. A typical uniform con-
vergence result takes the form

PmﬁﬁpuamAf)—fuﬁ|>e}sCman“«;9w*”mﬂ% (24)

Even the exponent in (24) depends on the setting: In regression 3 can be set
to 1, however in agnostic learning [21] in general 8 = 2, except if the class is
convex in which case it can be set to 1 [27]. Since our primary interest is in
determining N (e, F) we will not try to summarize the large body of work now
done on uniform convergence results and generalization error.

These generalization bounds are typically used by setting the right hand side
equal to ¢ and solving for m = m(e, §) (which is called the sample complexity).
Another way to use these results is as a learning curve bound &(d, m) where

P sup | Remy () = RU)| > 20, m)} < 6

We note here that the determination of €(d,m) is quite convenient in terms of
én, the dyadic entropy number associated with the covering number N (e, F)
n (24). Setting the right hand side of (24) equal to J, we have

) = c1(m)N" (e, ff")efeﬂm/c2
o
= log <—01(6m)) + s = logN" (€, F)
elog(%)Jrj%Jrl € (25)

Thus €(d,m) = {e:(25) holds}. Thus the use of €, or e, (which will arise
naturally from our techniques) is in fact a convenient thing to do for finding
learning curves.

5 Entropy Numbers for Kernel Machines

5.1

In the following we will mainly consider machines where the mapping into
feature space is defined by Mercer kernels k(x,y) as they are easier to deal with
using functional analytic methods. Such machines have become very popular
due to the success of SV machines. Nonetheless in Subsection 5.3 we will show
how a more direct approach could be taken towards upper-bounding entropy
numbers.

Mercer’s Theorem, Feature Spaces and Scaling

Our goal is to make statements about the shape of the image of the input space
X under the feature map ®(-). We will make use of Mercer’s theorem. The
version stated below is a special case of the theorem proven in [25, p. 145]. In
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the following we will assume (X, i) to be a finite measure space, i.e. u(X) < oo.
As usual, by “almost all” we mean for all elements of X" except a set of pu”"-
measure zero.

Theorem 4 (Mercer) Suppose k € Loo(X?) is a symmetric kernel (hence
k(z,2') = k(z',z)) such that the integral operator Ty : Ly(X) — Lo(X),

Tif() = /x K y) () du(y) (26)

is positive. Let 1; € Lo(X) be the eigenfunction of T} associated with the
eigenvalue A; # 0 and normalized such that ||v;||r, = 1.

1. (N\(T)); € 1.

2. 1hj € Loo(X) and sup; [|[¢]|L., < oo.

3. k(x,y) = X Ajhj(x);(y) holds for almost all (x,y), where the series
converges Zziiolutely and uniformly for almost all (x,y).

We will call a kernel satisfying the conditions of this theorem a Mercer kernel.
From statement 2 of Mercer’s theorem there exists some constant C; € RT
depending on k(-,-) such that

[9;(x)| < Cj for all j € N and x € X. (27)

(Actually (27) holds only for almost all x € X, but from here on we gloss
over these measure-theoretic niceties in the exposition.) Moreover from state-
ment 3 it follows that k(x,y) corresponds to a dot product in 45 i.e. k(x,y) =
(®(x), B(y)):, with

d: X — EQ
x = (35(%))) = (VAh(x));

for almost all x € X. In the following we will (without loss of generality)
assume the sequence of ();); be sorted in nonincreasing order. From the argu-
ment above one can see that ®(X) lives not only in /5 but in an axis parallel
parallelepiped with lengths 2C}, \/E .

It will be useful to consider maps that map ®(X) into balls of some radius
R centered at the origin. The following proposition shows that the class of all
these maps is determined by elements of ¢5 and the sequence of eigenvalues

(Aj);-

(28)

Proposition 5 (Mapping ®(x) into ¢3) Let S be the diagonal map

S:RY - RN

S (xj)j = S(ij)j = (ijj)j. (29)

Then S maps ®(X) into a ball of finite radius Rg centered at the origin if and
only if (\/Ajsj); € Ca.
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Proof
(<) Suppose (sj\/A;); € €2 and let Ry := C}||(sjy/Aj);ll7, < co. For any
x € X,
[SPEIE, =D siAiles(x)I* <D siACF = B (30)
JEN JEN
Hence S®(X) C /5.
(=) Suppose (sj4/A;j); is not in fo. Hence the sequence (A,), with A,

> 3?)\]- is unbounded. Now define
j=1

=) SINli(x) . (31)
j=1

Then [|an(-)||,(x) = An due to the normalization condition on ;. However,
as 11(X) < oo there exists a set X of nonzero measure such that

Ap

an(x) > X for all x € X. (32)

)
Combining the left side of (30) with (31) we obtain ||S<I>(x)]|?2 > an(x) for all
) is

n € N and almost all x. Since ap(x unbounded for a set X with nonzero
measure in X, we can see that S®(X) ¢ /. [ |

The consequence of this result is that there exists no azis parallel ellipsoid &
not completely containing the (also) axis parallel parallelepiped B of sidelength
(2Ck+/Aj)j, such that €& would contain ®(X). More formally

B C € if and only if ®(X) C €.

Hence ®(X) contains a set of nonzero measure of elements near the corners of
the parallelepiped.

Once we know that ®(X) “fills” the parallelepiped described above we can
use this result to construct an inverse mapping A from the unit ball in £5 to an
ellipsoid € such that ®(X) C € as in the following diagram.

X P e —2—— U, (33)
ﬂ A
.-

The operator A will be useful for computing the entropy numbers of concate-
nations of operators. (Knowing the inverse will allow us to compute the for-
ward operator, and that can be used to bound the covering numbers of the
class of functions, as shown in the next subsection.) We thus seek an operator
A : 9y — {5 such that

AU,) C &. (34)

We can ensure this by constructing A such that

A: (:Ej)j — (RAajmj)j (35)
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with R4 := Ck||(\/Aj/a;)jlle,- From Proposition 5 it follows that all those
operators A for which R4 < oo will satisfy (34). We call such scaling (inverse)
operators admissible.

Entropy Numbers

The next step is to compute the entropy numbers of the operator A and use this
to obtain bounds on the entropy numbers for kernel machines like SV machines.
We will make use of the following theorem due to Gordon, Konig and Schiitt
[15, p. 226] (stated in the present form in [11, p. 17]).

Theorem 6 Let oy > 09 > --- > 0j > --- >0 be a non—increasing sequence of
non-negative numbers and let

Dx = (o121,0222,...,0;%j,...) (36)

for x = (z1,22,...,%5,...) € £, be the diagonal operator from £, into itself,
generated by the sequence (0j);, where 1 <p < oo. Then for all n € N,

1 1 1 1
supn i (o102---04)i < e€,(D) <6supn i(o102---0j)7. (37)
JEN JEN
We can exploit the freedom in choosing A to minimize an entropy number as
the following corollary shows. This will be a key ingredient of our calculation
of the covering numbers for SV classes, as shown below.

Corollary 7 (Entropy numbers for ®(X)) Let k:X x X — R be a Mercer
kernel and let A be defined by (35). Then

1 1
i(arag---aj)i.

W(Aily — 1)) < inf 6C s/ g
¢ ( 2 2) o (as)s:(\/l%/as)seﬁz ilellr\l) k H (\/_/a )s

L2 "
(38)

This result follows immediately by identifying D and A and exploiting the
freedom that we still have in choosing a particular operator A among the class
of admissible ones.

As already described in Section 1 the hypotheses that a SV machine gen-
erates can be expressed as (w,Xx) + b where both w and x are defined in the
feature space § = span(®(X)) and b € R. The kernel trick as introduced by [1]
was then successfully employed in [8] and [12] to extend the Optimal Margin
Hyperplane classifier to what is now known as the SV machine. We deal with
the “+b” term in Section 9; for now we consider the class

Fra = {(w,X): X €8, ||| < Ry} CR°.

Note that Fp, depends implicitly on k since & does.

What we seek are the ¢} covering numbers for the class Fpr, induced by
the kernel in terms of the parameter R, which is the inverse of the size of
the margin in feature space, or equivalently, the size of the weight vector in
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feature space as defined by the dot product in 8 (see [48, 47| for details). In
the following we will call such hypothesis classes with length constraint on the
weight vectors in feature space SV classes. Let T be the operator T' = Sk, Rw
where Ry, € R and the operator S,, is defined by

Sgm by — I

Sgm W = (X1, W), on, (R, W) (39)

with x; € ®(X) for all j. The following theorem is useful when computing
entropy numbers in terms of T" and A. It is originally due to Maurey, and was
extended by Carl [10]. See [53] for some extensions and historical remarks.

Theorem 8 (Carl and Stephani [11, p. 246]) Let S € £(H,¢7) where H
is a Hilbert space. Then there exists a constant ¢ > 0 such that for all m € N,
and 1 <j<m

en(8) < S (n " 1og (1+ %))I/Z.

An alternative proof of this result (given in [53]) provides a small explicit value
for the constant: ¢ = 2(271?%3)1/2 < 5.3771.
The restatement of Theorem 8 in terms of eyn—1 = e, will be useful in the

following. Under the assumptions above we have

1/2
< -1 _m )
en(S) < c|| S]] <(logn + 1) log (1 + Togn © 1)) (40)

Now we can combine the bounds on entropy numbers of A and Sxm to
obtain bounds for SV classes. First we need the following lemma.

Lemma 9 (Carl and Stephani [11, p. 11]) Let E, F,G be Banach spaces,
Re £(F,G), and S € £(E,F). Then, for n,t € N,

ent(RS) < en(R)er(S) (41)
en(RS) < en(R)[S]| (42)
en(RS) < (SR (43)

Note that the latter two inequalities follow directly from the fact that €;(R) =
|R|| for all R € £(F,G).

Theorem 10 (Bounds for SV classes) Let k be a Mercer kernel, let & be
induced via (28) and let T := Sgm Rw where Sk, is given by (39) and Ry, € R*.
Let A be defined by (35) and suppose X; = ®(x;) for j = 1,...,m. Then the
entropy numbers of T satisfy the following inequalities:

IN

enl(T) < o A|Rwlog " nlog"? (1+ ) (44)
en(T) < 6Rwen(A) (45)

ent(T) < 6¢cRy log_l/2 nlogl/2 (1 + 107gn> et(A)

A

where Cy and ¢ are defined as in Corollary 7 and Lemma 8.
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This result gives several options for bounding €,(T"). The reason for using €,
instead of e,, is that the index only may be integer in the former case (whereas
it can be in [1, 00) in the latter), thus making it easier to obtain tighter bounds.
We shall see in examples later that the best inequality to use depends on the

rate of decay of the eigenvalues of k. The result gives effective bounds on
N™(e,Fg,,) since

En(TZEQ — egé) <€ = Nm(EO,ng) <n.

Proof We will use the following factorization of T' to upper bound €, (7).
Up —————m (46)

xm
Rw S(Afl)'(m)

RwU, —2 -~ R.&

The top left part of the diagram follows from the definition of 7. The fact
that remainder commutes stems from the fact that since A is diagonal, it is
self-adjoint and so

(w,x) = (w, AA7'X) = (Aw, A7'%). (47)

Instead of computing the covering number of T' = Sg., Rw directly, which is
difficult or wasteful, as the the bound on Sg,. does not take into account that
x € & but just makes the assumption of x € pU,, for some p > 0, we will
represent T' as S'( A—le)ARW- This is more efficient as we constructed A such
that A~1®(X) € Uy, filling a larger proportion of it than just %@(X).

By construction of A and due to the Cauchy-Schwarz inequality we have
S 4—1xm| = 1. Thus applying lemma 9 to the factorization of T" and using
Theorem 8 proves the theorem. [ |

As we shall see in Section 7, one can give asymptotic rates of decay for €, (A).
(In fact we give non-asymptotic results with explicitly evaluable constants.) It
is thus of some interest to give overall asymptotic rates of decay of €,(T) in
terms of the order of €,(A).

Lemma 11 (Rate bounds on €,) Let k be a Mercer kernel and suppose A
is the scaling operator associated with it as defined by (35).

1. If ,(A) = O(log *n) for some o > 0 then
en(T) = O(log™ (@12 ). (48)
2. Iflogen(A) = O(log=? n) for some B> 0 then

log e, (T) = O(log™" n). (49)
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This Lemma shows that in the first case, Maurey’s result (theorem 8) allows
an improvement in the exponent of the entropy number of T, whereas in the
second, it affords none (since the entropy numbers decay so fast anyway). The
Maurey result may still help in that case though for nonasymptotic n.

Proof From theorem 8 we know that €,(S) = O(log 2n). Now use (41),
splitting the index n in the following way:

n=n"n{""") with 7 € (0,1). (50)
For the first case this yields

en(T) = O(log /?2n7)O(log *j™")

T 12(1 — T)*O‘O(log*(aH/Z) n) = O(log*(o‘H/Q) n). (51)

In the second case we have

log en(T)) = log ((7*1/2)0(1og*1/2 n)) +(1—7)P0®og? n) = O(log—? n).
(52)
| |

In a nutshell we can always obtain rates of convergence better than those
due to Maurey’s theorem because we are not dealing with arbitrary mappings
into infinite dimensional spaces. In fact, for logarithmic dependency of €, (T)
on n, the effect of the kernel is so strong that it completely dominates the
1/€? behaviour for arbitrary Hilbert spaces. An example of such a kernel is
k(z,y) = exp(—(z — y)?); see Proposition 16 and also Section 6 for the dis-
cretization question.

Empirical Bounds

Instead of theoretically determining the shape of ®(X) a priori one could use
the training and/or test data to empirically estimate its shape and use this
quantity to compute an operator Bep,, analogously to (33) which performs the
mapping described above. In this subsection we will sketch a possible approach
— the full development of these ideas would requires considerable further work
and will be deferred to a subsequent paper.

For instance assume that we are given an m-sample of datapoints X :=
{X1,...,%Xm} C X, not necessarily only from the training set but perhaps also
comprising unlabelled test samples, drawn from the same distribution P. Now
suppose we could estimate the first j radii (e.g. in a manner similar to the radius
estimate in [37]) {r1,...,7;} of an ellipsoid enclosing ®(X) with probability say
1 — 7.2 Denote by {e,... ,€j_1} C £y a set of orthogonal vectors pointing in
the directions given by the radii and P; the projector onto (span{ei,...,e;_1}).
Note that we only have to be sure that with probability 1 —7 the data lies inside
the ellipsoid and that we need no statement on the precision of the estimate

2This for instance could be done in a way similar to Kernel-PCA [43] by computing the
eigensystem (\;, ;) of the Gram matrix k;; = k(z;, z;). Then, possibly after some ordering,

vV )\i Z T =/ )\i max; |aij|.
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of the radii — this makes a big difference in terms of the volume. Then with
probability 1 — n we could upper bound the covering numbers of a scaling
operator Bemp by making use of corollary 7. Due to the ellipsoid condition the
following inequality holds for all x:

-1
S e, (53)
Tt

t=1

and moreover ||P;®(x;)|ls, < r; for all 1 < ¢t < M. Hence for an operator
Bemp_1 scaling the first j —1 directions eq,...,ej_1 by rt_l and the rest by 7"]-_1,
Bemp '®(X) would still be enclosed in v/2Uy,. Hence we have a similar situation
as in the case where we explicitly computed all eigenvalues analytically. Setting
ry := rj for ¢ > j and applying corollary 7 leads to the following upper bound
on the entropy of Bemp

S

_1
6n(Bemp) < 6\/5 supn 7 (7’1’1"2 R ’f'j)
JEN

(54)

The aim is now to find the maximum n for which the estimate will not break
down yet (for we have the liberty of distributing the covering numbers arbi-
trarily between the shrinkage operator Bepp, and the actual evaluation operator
Sxm as shown in section 5). In other words we are looking for that particular
value of j where sup; is taken on for the smallest radius estimated. Ignoring
the fact that n € N for a moment we arrive at the following equation:

1
n o i(riry---rj)

1

=n jﬁ(’l"l’f'g""l"j"f'j)j% (55)

S

Solving for n yields and taking n € N into account yields

re.

nj = {%J and therefore €, 11(Bemp) < 6\/57’]- (56)
J

n; rii1
If this assumption failed to be true one would have to redefine ]Bemp toj ;cale
only the first j directions for which this happened to hold — it gains one little
to scale in directions where the decay rate is too slow.

Instead of taking real data (which may be expensive to get) we also could
upper bound the first 5 radii by a Monte-Carlo method, once we can bound the
set X. This is also useful when no analytic expansion in terms of eigenvalues
of the operator can be obtained or where it would be too tedious to obtain
explicitly. In cases with a sufficient amount of computational power available
this may even be a more practical and faster way than computing the spectrum
given by k analytically. The latter, at least in order to obtain optimal bounds,
would have to be done for each learning problem anew. The method proposed
here would obviate the need for such detailed theoretical calculations which
may be impractical to carry out in some instances.

This calculation is valid as n; is a nondecreasing function of j: Bit1 (T—J) .
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6 Discrete Spectra of Convolution Operators

The results presented above show that if one knows the eigenvalue sequence
(A\i)i of a compact operator, one can bound its entropy numbers. Whilst it is
always possible to assume that the data fed into a SV machine have bounded
support, the same can not be said of the kernel k(- -); a commonly used kernel is
k(z,y) = exp(—(z —y)?) which has noncompact support. The induced integral

operator
o0

(T f)(z) = / Kz, y)f(y)dy (57)

—0o0

then has a continuous spectrum (a nondenumerable infinity of eigenvalues) and
thus T} is not compact [6, p.267]. The question arises: can we make use of
such kernels in SV machines and still obtain generalization error bounds of
the form developed above? A further motivation stems from the fact that by
a theorem of Widom [52], the eigenvalue decay of any convolution operator
defined on a a compact set via a kernel having compact support can decay no
faster than \; = O(e™/ 2) and thus if one seeks very rapid decay of eigenvalues
(with concomitantly small entropy numbers), one must use convolution kernels
with noncompact support.

We will resolve these issues in the present section. Before doing so, let us
first consider the case that suppk C [—a,a] for some a < oco. Suppose further
that the data points x; satisfy x; € [—b,b] for all j. If k(-,-) is a convolution
kernel (i.e. k(z,y) = k(z — y)), then the SV hypothesis h(-) can be written

hi(z) = ogk(z, ;) = > ajky(,%;) =t hy, (z) (58)
j=1 j=1
for v > 2(a + b) where k,(-) is the v-periodic extension of k(-):
ky(z) = Z k(x — jv). (59)

j=—00

We now relate the eigenvalues of Ty, to the Fourier transform of k(-). We do
so for the case of d = 1 and then state the general case later.

Lemma 12 Let k:R — R be a symmetric convolution kernel, let K(w) =
Flk(z)](w) denote the Fourier transform of k(-) (see (69)) and k, denote the
v—periodical kernel derived from k (also assume that k, exists). Then k, has a

representation as a Fourier series with wy := 27” and
ko(z—y) = 3 SEK(jwo)e? 0"
j=—00 (60)

= @K(U) + Z;; %\/ﬂK(jwo) cos(jwo(z — y)).

Moreover \j = V2w K (jwo) for j € Z and Cy, = \/%
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Proof Clearly the Fourier series coefficients K of k, exist (as k, exists) with

1 (/2
K;:= —/ e %k (x)dx
! \/5 v/2 U( )
and therefore by the definition of k, and the existence of K(w) we conclude

Kj — ﬁ f://Q? Z?i_oo e—iju.)ol‘k.(l. _ _]’U)
2 _jjwox : 2 -
= LR e Th(m — ju) = \ /2K (juw).

This and the fact that {z — v~'/2e¥“0%:j ¢ 7Z} forms an orthogonal basis
in Ly([—3,5],C) proves (60). (Note that from k(z) = k(—z) we conclude

K(w) = K(—w)). Furthermore, we are interested in real valued basis functions
for k(z — y). The functions

Yo(z) =

bia) = (61)

<5

= cos(jwor) and 9_;(z) := \/%sin(ngx) forall j €N

form an eigensystem of the integral operator defined by k, with the correspond-
ing eigenvalues /271K (jwp). Finally one can see that Cj = \/% by computing
the max over j € N and z € [—v/2,v/2]. [ |

Thus even though T}, may not be compact, T}, may be (if (K (jwo));jen C 42
for example). The above lemma can be applied whenever we can form k,(-)
from k(-). Clearly k(z) = O(z~(1t9)) for some € > 0 suffices to ensure the sum
in (59) converges.

Let us now consider how to choose v. Note that the Riemann-Lebesgue
lemma tells us that for integrable k(-) of bounded variation (surely any kernel
one would use would satisfy that assumption), one has K(w) = O(1/w). There
is an tradeoff in choosing v in that for large enough w, K (w) is a decreasing func-
tion of w (at least as fast as 1/w) and thus by Lemma 12, A\; = V27K (275 /v)
is an increasing function of v. This suggests one should choose a small value of
v. But a small v will lead to high empirical error (as the kernel “wraps around”
and its localization properties are lost) and large Cy. There are several ap-
proaches to picking a value of v. One obvious one is to a priori pick some € > 0
and choose the smallest v such that |k(z) — k,(z)| < € for all x € [—v/2,v/2].
Thus one would obtain a hypothesis hy, () uniformly within C€ of hy(x) where

>t lajl < C.

Remark 13 The above Lemma can be readily extended to d dimensions. As-
sume k(x) is v-periodic in each direction (x = (z1,...,24)), we get

A= (2m) 2 K (wof) = (27) 2 K (wo i) (62)

d
2.

for radially symmetric k and finally for the eigenfunctions Cy = (2/v)
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Finally it is worth explicitly noting how the choice of a different bandwidth
of the kernel, i.e. letting k(7 (x) := 0%k (ox), affects the eigenspectrum of the
corresponding operator. We have K(?)(w) = K(w/0), hence scaling a kernel
by o means more densely spaced eigenvalues in the spectrum of the integral
operator Ty ().

7 Covering Numbers for Given Decay Rates

In this section we will show how the asymptotic behaviour of €,(A:ly — £5),
where A is the scaling operator introduced before, depends on the eigenvalues
of Tk.

A similar analysis has been carried out by Prosser [34], in order to compute
the entropy numbers of integral operators. However all of his operators mapped
into Lo(X,C). Furthermore, whilst our propositions are stated as asympotic
results as his were, the proofs actually give non-asympototic information with
explicit constants.

Note that we need to sort the eigenvalues in a nonincreasing manner because
of the requirements in corollary 7. If the eigenvalues were unsorted one could
obtain far too small numbers in the geometrical mean of Aq,...,A;. Many one-
dimensional kernels have nondegenerate systems of eigenvalues in which case
it is straightforward to explicitly compute the geometrical means of the eigen-
values as will be shown below. Note that whilst all of the examples below are
for convolution kernels, i.e. k(z,y) = k(z — y), there is nothing in the formula-
tions of the propositions themselves that requires this. When we consider the
d-dimensional case we shall see that with rotationally invariant kernels, degen-
erate systems of eigenvalues are generic. In section 8.2 we will show how to
systematically deal with that case.

Let us consider the special case where (\;); decays asymptotically with some
polynomial or exponential degree. In this case we can choose a sequence (a;);
for which we can evaluate (38) explicitly. By the eigenvalues of a kernel k& we
mean the eigenvalues of the the induced integral operator Tj.

Proposition 14 (Polynomial Decay) Let k be a Mercer kernel with eigen-
values satisfying \j = B2~ (@D for some o > 0. Then

en(A:ily — ly) = O ((]nn)—%—l—O(ln*?lnn)) _ O(ln_% n).
An example of such a kernel is k(z) = e~*. The proof is in the appendix.

Proposition 15 (Exponential Decay) Suppose k is a Mercer kernel with
eigenvalues \; = B2e=0=1) for some o, 3 > 0. Then

Ine; ' (A: by — £5) = O(In? n)

An example of such a kernel is k(x) = ﬁ The proof is in the appendix.
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Proposition 16 (Exponentlal Quadratic Decay) Suppose k is a Mercer
kernel with \j = = B2l 1)? for some o, 3 > 0. Then

Ine, (A:ly — £y) = O(ln§ n).

An example of such a kernel is the Gaussian k(z) = e~%". The proof is in the ap-
pendix. We conclude this section with a general relation between exponential—-
polynomial decay rates and orders of bounds on €, (A).

Proposition 17 (Exponential-Polynomial decay) Suppose k is a Mercer
kernel with \j = B2e=" for some o, B,p > 0. Then

Ine, ' (A: £y — £5) = O(InP+T 1)

See the appendix for a proof sketch. This result is interesting but probably of
little theoretical relevance as most practical kernels do not exhibit these rapid
decay properties. (Recall the remarks at the beginning of Section 6.)

Proposition 18 The rates given in propositions 14, 15, 16, and 17 are tight.

Proof We start with proposition 14. Carl and Stephani [11, Proposition
1.5.1] show that the dyadic entropy numbers e, and the eigenvalues of the
corresponding diagonal operators on £, scale in an identical manner (in the
sense that they are members of the same Lorentz sequence space £5;). In our
case this means that they have the same polynomial rate of decay. Hence the
bound in Proposition 14 is tight for the operator A we assumed. Moreover from
proposition 5 we conclude that it is impossible to use another operator, say A’
that would have a faster rate of decay than A.

For the other propositions we have to do some more work, however it suffices
to show tightness for proposition 17 as the other cases are just a special case
thereof. Our proof relies on Equation 37 of theorem 6 as this also provides a
lower bound on €,(A) in terms of the eigenvalues of A. Analogously to theorem
7 one can show that

€n(A:ly — ly) > inf sup C, H ( /as)

—1 1
J ajas:--a; 7
(as)si(m/as Eéz jEN ( ])

(63)
The /y-norm can be bounded below by A;/a? which we can set to 3, without
loss of generality (as choosing the first scaling factors does not influence the
rate at all). For any operator with diagonal scaling coefficients a; = e~27" one
can find a constant ¢ such that

(araz...a5)7 =e S > e T, (64)

1 1
Now computing the sup; in (63) yields j = ¢o7 »+7 In»+T n for some positive
constant ¢o and finally for some ¢3 > 0

1 P
en(Aily = ly) > A\ C),  inf e ®s77 T ImPFIn (65)
T€[0,0/2]
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The inf; is obtained for 7 = «/2 and consequently for some ¢4, ¢5 > 0

P
en(A:ly — 05) > pge~ PPN (66)

which gives the claimed rate. Note that due to proposition 5 it is impossible
to get any operator A with a faster rate of decay than the one for 7 = «/2.
This shows it was sufficient to consider only this specific parametric family of
operators A and therefore the rates are tight for arbitrary A. [ |

8 Higher Dimensions

8.1

Things get a little bit more complicated in higher dimensions. There are basi-
cally two ways that can be pursued for constructing kernels in R? x RY — R
with d > 1 if no particular assumptions on the data we are dealing with are
made. Firstly one could construct kernels by

k(x —y) =k(z1 —y1) X - X k(zq — ya)- (67)

This choice will usually lead to preferred directions in input space as the kernels
are not rotationally invariant in general. The second approach consists in setting

k(x —y) = k(llx = ylle,)- (68)

This approach also leads to translationally invariant kernels which are also
rotationally invariant. In the following we will exploit this approach to com-
pute regularization operators and corresponding Green’s functions. It is quite
straightforward, however, to generalize our exposition to the rotational asym-
metric case. Now let us define the basic ingredients needed for the further
calculations.

Basic Tools
The d-dimensional Fourier transform is defined by

F: Ly(R?) = Ly(R?) with F[f](w) := W /R ) e HWX f(x)dx.  (69)

Then its inverse transform is given by

1

F~1: Ly(RY) — Ly(RY) with F7Hf](x) = i

/ WX f(w)dw.  (70)
Rd

F can be shown to be an isometry on Lo(R?).
Now introduce regularization operators P defined by

Flf](w)Flgl(w) ,
upp P(w) P(w) ¢ ()

(pr.po) = [
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for some nonnegative function P(w) converging to 0 for ||w| — oo. It can be
shown [43] that for a kernel to be a Green’s function of P*P, i.e.

(Pk(x), Pk(x — x¢)) = k(xq), (72)

we need F[k](w) = P(w). For radially symmetric functions, i.e. f(x) = f(||x/|2),
we can explicitly carry out the integration on the sphere to obtain Fourier
transform which is also radially symmetric (see e.g. [44, 29]), namely

FlfI(lwll) = w™ Hy[r" f (r)](lw]]), (73)

where v := %d — 1 and H,, is the Hankel transform over the positive real line.
The latter is defined by

H[f)(w) = /0 £ (r)J, (wr)dr. (74)
Here J, is the Bessel function of the first kind defined by
2 (<)

Jy(r) = r”27”Z

=0

227§\0(j +v+1) (75)

Note that H, = H; !, ie. f = H,[H,[f]] (in L) due to the Hankel inversion
theorem [44].

Degenerate Systems

Computing the Fourier transform for a given kernel k gives us the continu-
ous spectrum. As pointed out in Section 6, we are interested in the discrete
spectrum of integral kernels defined on X. This means that the eigenvalues
are defined on the grid wyZ? with wy = 27/v. Assuming k(x) is rotationally
invariant, so is K(w) and therefore also the eigenvalues \; = (277)%1( (jwo) as
shown in Lemma 12. Consequently we have degeneracies in the point spectrum
of the integral operator given by k (or k, respectively) as all jwy with equal
length will have the same eigenvalue. In order to deal with this case efficiently
we slightly modify Theorem 6 for our purposes. The following theorem allows
proper account to be taken of the multiplicity of eigenvalues, and thus allows
the straight-forward calculation of the sought for entropy numbers.

Theorem 19 Let (s¢); € N be an increasing sequence with sy = 1 and (0}); €
RY be a non-increasing sequence of non-negative numbers with

oj <oy forg<jandoj=os forsi_1 <j<s
and let
Dx = (o121,0222,...,0%j,...) (76)
for x = (z1,22,...,%5,...) € £, be the diagonal operator from £, into itself,
generated by the sequence (0j);, where 1 <p < oo. Then for all n € N,
1

1 1 1
supn <t (o109---05,)%t < en(D) <6supn <t (o102---0s,)%t. (77)
teN teN
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See the appendix for a proof.
This theorem allows us to obtain a similar result to corollary 7.

Corollary 20 (Entropy numbers for degenerate systems)

Let k:X x X — R be a Mercer kernel and let A be defined by (35) with the
additional restriction that the coefficients aj have to match the degeneracy of
Aj. Then

1

€n(A:ly — ly) < inf sup 6C}, n st(ajaz... ast)i

(aj)j:(\//\_j/aj)jEZQ teN

(\//\_j/aj>

Illey

(78)

This result by itself may not appear too useful. However this is exactly what we
need for the degenerate case (it is slightly tighter than the original statement,
as the sup effectively has to be carried out only over a subset of N). Finally we
have to compute the degree of multiplicity that occurs for different indices j. For
this purpose consider shells of radius 7 in R? centered at the origin, i.e. 7S¢,
which contain a nonzero number of elements of Z¢. Denote the corresponding
radii by r; and let n(r;,d) be the number of elements on these shells. Observe
that n(r,d) # 0 only when 72 € N. Thus

n(r,d) = |Z¢nrsd|
N(r,d) := E{ogpgr:p2eN}”(/’vd)-

The determination of n(r,d) is a classical problem which is completely solved
by the use of the #-series. (see e.g. [17]):

(79)

Theorem 21 (Occupation numbers of shells) Let the formal power series
O(x) be defined by

0(z) = i I :1+2§:xj2. (80)
j=1

j=—o0

Then -
(0(x))" = Zn(\/;, d)z’. (81)

J=1

This theorem allows one to readily compute n(r,d) exactly; see the appendix
for some Maple code to do so. (Note that whilst there do exist closed form
asymptotic approximate formulae for n(r,d) [17, p. 155], they are inordinately
complicated and of little use for our purposes.)

We can now construct an index of the eigenvalues which satisfies the required
ordering (at least for nonincreasing functions K (w)) and we get the following
result:

Corollary 22 (Radially Symmetric Systems on a Lattice)
Let k:X x X — R be a Mercer kernel with eigenvalues given by a radially
symmetric nonincreasing function on a lattice, i.e. \j = A(||j||) with j € Z¢ and
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let A be defined by (35) with the additional restriction that the coefficients a;
have to match the degeneracy of A;. Then

()

Note that this result, although it may seem straightforward, cannot be obtained
from corollary 7 directly as there the sup would have to be carried out over N
instead of (N(r¢,d));. The different formulation allows us to compute bounds
on the entropy numbers more easily.

Gn(A:EQ — 62) <

1
R S ; Nred)
n VoD (szla(rq)n(rq,d)> NGod)
(£2)4

%5

inf - sup;n 6Ck
(aj)j:<\/¥> ey
J

(82)

Bounds for Kernels in R?

Let us conclude this section with some examples of the eigenvalue sequences
for kernels typically used in SV machines. These can then be used to evaluate
the right hand side in corollary 22. Recall that v = g — 1. First we have to
compute the Fourier/Hankel transform for the kernels.

Example 23 (Gaussian RBFs) For Gaussian rbfs in d dimensions we have
2

k(r) = o~ %2 and correspondingly

2

Flk)(w) = w Yo H, [7"”6_;0_2] (w)

- - _w?o?
- w 1/0_2(1/—1—1) d Ve
7w20'2
= e 2

or in other words — the Fourier transform of a Gaussian is a Gaussian.

Example 24 (Exponential RBFs) In the case of k(r) = e~ we get
Flkl(w) = w™H,[r"e "] (w)

= wr2rtlyrariT (v+3) (a®+w?)™""

d
= 25“”_%F(%+1) drt
2

(a2 + w?) 2

i.e. in the case of d = 1 we recover the damped harmonic oscillator (in frequency

domain). In general we get a decay in terms of the eigenvalues like w~(d+1)

Moreover we can conclude from this that the Fourier transform of k, viewed
_d41

itself as a kernel, i.e. k(r) = (1—1—7“2) 2 yields the initial kernel as its

corresponding power spectrum in Fourier domain.

Example 25 (Damped Harmonic Oscillator) Another way to generalize
the harmonic oscillator, this time in a way, that k does not depend on the
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dimensionality d is to set k(r) = az—irz Following [51] (section 13.6) we get

,),,1/

a? 4 r2

= wVd"K,(wa)

i) = o | o]

where K, is the Bessel function of the second kind, defined by (see [44])
K,(z)= / e TSt cosh (vt)dt. (83)
0

It is possible to upper bound Fk] via

p—1 21 1
Ku($) _ \/;e—x 2(217)—]'.1:(11_‘_—‘7'4_21) +6- (Qx)—pw
x s j.F(U—j+§) ]!F(y—p+§)

(84)
with p > v — % and 0 € [0,1] [16, eq. 8.451.6]). As one can see the term in
the brackets [] converges to 1 for x — oo and we get exponential decay of the
etgenvalues.

Using Theorem 21, Corollary 22 and Remark 13 one may compute the en-
tropy numbers numerically for a particular kernel and a particular set of pa-
rameters. This may seem unsatisfactory from a theoretician’s point of view.
However, as the ultimate goal is to use the obtained bounds for model selec-
tion, it is desirable to obtain as tight bounds (especially in the constants) as
possible. Hence if much more precise bounds can be obtained by some not too
expensive numerical calculation it is definitely worth while to use those instead
of a theoretically nice but not sufficiently tight upper bound. The computa-
tional effort to calculate these quantities is typically negligible in comparison
to training the actual learning machine.

Notwithstanding the above, in order to give a feeling for the effect of the
decay of the Fourier transform of the kernel on the entropy numbers of the A
operator, we conclude with the following general result, the proof of which is
relegated to the appendix.

Proposition 26 (Polynomial exponential decay in R?) For kernels k(-, )
in RY x R with Mw) = B2e I with o, B,p > 0 we have

Ine, ' (A: ly — £5) = O(In¥+ n)

9 Conclusions

We have shown how to connect properties known about mappings into feature
spaces with bounds on the covering numbers. Our reasoning relied on the fact
that this mapping exhibits certain decay properties to ensure rapid convergence
and a constraint on the size of the weight vector in feature space. This means
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that the corresponding algorithms have to restrict exactly this quantity to en-
sure good generalization performance. This is exactly what is done in Support
Vector machines.

The actual application of our results, perhaps for model selection using
structural risk minimization, is somewhat involved. Below we outline one pos-
sible path. As said before, the viewpoint in this paper is new, and perhaps
there will be refinements soon forthcoming which would make the codification
of our existing results into a single generalization bound premature.

A Possible Procedure to use the Results of this Pa-
per

Choose k£ and o The kernel £ may be chosen for a variety of reasons, which
we have nothing additional to say about here. The choice of o should
take account of the discussion in Section 6.

Choose the period v of the kernel One suggested procedure is outlined in
Section 6.

Bound €,(A) This can be done using Corollary 7 (for the case d = 1) or
Corollary 20 or 22 for the case d > 1. Some examples of this sort of
calculation are given in Section 7.

Bound ¢,(7T) Using Theorem 10.

Take account of the “+b” The key observation is that given a class F with
known N™ (e, F), one can bound N™ (e, 1) as follows. (Here F* := {f +
b: f € F,b € R}.) Suppose V, is an e-cover for F and elements of F+ are
uniformly bounded by B (this implies a limit on |b| as well as a uniform
bound on elements of F). Then

BJe
V= | Vetije
j:—B/E

is an e-cover for F+ and thus N™(e, ) < ZEN™(¢, F). Observe that this
will only be “noticeable” for classes F with very slowly growing covering
numbers (polynomial in 1/€).

Take account of the loss function using Lemma 2 for example.

Plug into a uniform convergence result See the pointers to the literature
and the example in Section 4.

Future Work

One might think of similar algorithms (e.g. weight decay) which place a similar
constraint not on the weight vector in feature space but, say, in input space. It
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seems promising to explore this direction in more detail within the framework
presented here.

The results of the present paper hinge on the measurement of the size of
the weight vector w by a £ norm. In [53] we show the effect of different norms
for measuring the size of w, as well as presenting a number of related results.
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Proofs of Results in Section 7

Proof (Proposition 14) We will make use of Corollary 7. In this case all
sequences (a;); = (j72); with 0 < 7 < a lead to an admissible scaling property.
Here we have

. T= 2

=p¢la—T1+1) (85)

12

) 76

where ((-) is Riemann’s zeta function. Moreover we can upper bound ((-) by
C(1+ x) < x + v where vy is Euler’s constant. The next step is to evaluate the
expression

hh—‘

(ar1ag -

(Hs—%> = ()% (86)

Hence we get

en < 6CL06 inf sup <
7€(0,@) jeN

) n G 87)

Replacing supjcy in (87) by supje(; o) and rewriting the expressions as expo-
nentials we obtain

o —T

€n < 6CL0 inf  sup <
7€(0,2) je1,00)

+’Y> efjl,lnnfgjlnr(]#»l) (88)
One can check (by making use of an asymptotic expansion of I'(x)) that

7In27

45

T Il +1) > %(mj —1) - (89)

Hence we can upper-bound the exponent (as we have to compute the sup) in
(88) by

1 1 In2
—;lnn—iT(lnj—l)—T(Zjﬁ). (90)
The maximum is obtained for j = 21% + % and hence
1 2Inn 1 3
n < 6C inf —In(2 . 91
w300 i, (= +0) (S egmen) o

The inf is approximately obtained for

21
— 5 with Z = nn —In27
yIn* Z o 2

and consequently 7 — « for n — 0o. Substitution concludes the proof. [ |
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Proof (Proposition 15) By using the same argument as in the example above,
for sequences of exponential decay, i.e. (a;); = (6_5(7_1))]- with 7 € (0,a) we
get

FG-0)| = (92)
and ;
(araz ... aj)ﬁl‘ = e_%T Z:) (=0 — T (93)
Hence we get
en < GCkBTEi(%fa) jlelg nfﬂlﬁe*j% (94)

In order to compute the infsup we will make some approximations. The first
step to replace sup by sup. As we only want to compute an upper bound this

JEN  jeR+
is a useful assumption. The maximum is achieved at j = 21“” Plugging j
back in and rearranging terms yields
e—V2InnT+7
én S GCkBTel(r(l)f,‘a) m (95)
This concludes the proof as the proposition holds for any 7 € (0, «). [ |

Remark 27 (Computing i(nf )) Basically there are two options — either to
7€(0,a

numerically compute inf of (95), or to use approzimations. For small Inn, i.e.
Inn < 2« setting T = /2 is a good estimate. For Inn > 2a we can find the
approzimate minimum of (95) for

o V2lnn — Vo ~1_ 2
V2Inn + /o Inn

This will determine our particular choice of T (although it may not be optimal).

From this it follows that T > o — ’/1?1_& i.e. T = « for n — oo. This leads to

n’

1 o _\/oann—vatnn
€n S 60,8\/;:565_ 2alnn—/8alnn (97)

This bound has the same rate but possibly better constant factors.

(96)

For the proof of Proposition 16 we need the following Lemma:

Lemma 28 (Summation and Integration in R') Suppose f : R — R is a
nonincreasing function. Then the following inequality holds for any a € Z

/mf(i)dx <Y fn) < /OO1 f(@)dz. (98)
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Proof The proof relies on the fact that

n+1
f(n)z/ f(n)dn > f(n +1)

00 oo n+l
due to the monotonicity of f and a decomposition of the integral [ = Y [ .

0 n=0 n
The lemma is a direct consequence thereof. [ |

Proof (Proposition 16) Choose (a;); = (e_%(j_l)Q)j with 7 € (0, «) analo-
gously to the two cases above. This leads to

due to Lemma 28 and

(arag...a;)7 =e 7 5= = ¢ U, (100)

Putting everything together yields

en < 6CH inf supn J\/1+1/ e 12U DI, (101)
7€(0,a) ]EN Cl(—T

Now we will upper bound (101). For evaluating the sup let us distinguish two
cases.
For the sup being obtained at j = 1 we get

€n < 6CHN7! (1 + \/%> : (102)

thus Ine~! = O(Inn) for 5 = 1. For j > 2 the following expression is an upper

bound for €,
€n <6CH inf sup n 7 \/ + / (103)
7€(0,a) j€E[2,00) Oé — 7'

with ¢ = 3/8 as 5(j — 1)(2j — 1) > 42 for all j € [2,00). Computing the

SUpPj¢(2,00] leads to
1
3lnn\3
| = 104
’ ( o ) o

en < 6CH inf \/1+‘/ e*% 97)8 In n (105)
7€(0,a) O[—T

and therefore
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The overall bound on ¢, is bounded by the maximum of the bounds obtained
for j =1and j > 2. As Inns decays more slowly than Inn the case of j > 2
dominates for large n and thus

Ine, ' = O(In??n) (106)

n

This proves the scaling behaviour for quadratic polynomial decay as the given
rate holds for any particular 7 [ |

Note that for sufficiently large Inn we can let ¢ get arbitrarily close to 1 and
thus obtain a better rate.

Remark 29 (Computing inf ) Again we have the choice of either numer-

)

ically evaluating (105) or computing an approzimate solution by either setting
T = a/2 or making the assumption of large Inn. In the latter case we obtain
an approzimately optimal solution for

1 [ 9n%a? 1/9
T=a—= | —F
2 (¢2 1n4n>
which converges to a for Inn — oo.

Proof (Proposition 17)(sketch only) Analogously to before we use a series
(aj); = = ¢ 7/2%”, Then we bound

=p i 7= < /3\/1 + p(z(_l/f))l/p (107)

=0

(aras...a5)i =e =1 <eg "W (108)
for some positive number ¢. And again computing the SUPge[1,00] WE 8et

1
k = ¢'Inp+T n for some ¢, and then finally resubstitution yields the claimed
rate of convergence for any 7 € (0, a) which proves the theorem. [ |

Proof of Theorem 19

Proof The first part of the inequality follows directly from theorem 6 as it is
a weaker statement than the original one. We prove the second part by closely
mimicking the proof in [11, p. 17]. We define

1 1
d(n) :=8supn =t (o102---05,) 5t (109)
teN

and show that for all n there is an index s; with o541 < @. For this purpose

choose an index r such that n < 25+ and thus 1 < 2n~ /6t Moreover we

have )

0s;41 < (0102 05,41) ! (110)
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because of the monotonicity of (0;); and finally

1
os;41 < Zn_l/(sj+1)(0102---Usj_,_l)sf“. (111)

Using the definition of §(n) we thus conclude 05,11 < d(n)/4. If this happens
to be the case for o; we have €,(D) < oy which proves the theorem.

If this is not the case there exists an index s; such that 05,11 < §(n)/4 < os;.
Hence the corresponding sectional operator

Dy, : £, — £, with

112
DSj(x17$27"'7$s]'7$s]'+17"'):(O-lx170-2$27-'-7O-ij5j70707"') ( )

is of rank s; and the image Dy, (U,) of the closed unit ball U, of £, is isometric

to the subset D(sf)(Uzgsj )) of £,/. In any case Dy, (Up) is a precompact subset of
£p. So let y1,y2,...,yn be a maximal system of elements in D, (Up) with

1y — ysll > d6(n)/2 for j # 7. (113)

The maximality of this system guarantees that

N
D, €U {u+ %0, (114)

=1

and thus ey (Ds;) < 0(n)/2. In order to get an estimate for ey (D) we split the
operator D into two parts D = (D — Ds;) + D, which allows us to bound

en(D) < [|D — Ds; || + en(Ds; ). (115)

Using ||D — D, || = 05;41 < d(n)/4 and the bound on ey (Ds;) we arrive at
3
en(D) < 74(n). (116)

The final step is to show that N < n as then by substituting in the definition
of §(n) into (116) yields the result. This is again achieved by a comparison
of volumes. Consider the sets {y; + (§(n)/4)U,’ } as subsets of the space £,’
which is possible since y; € Ds; (Uy) and Ds; (Up) = DGi)(U,7). These sets are
obviously pairwise disjoint. On the other hand we have

N
) . . , .
U{W+%?W}9DWWWHJ@WUQHWMWO (117)
7j=1

as 0(n)/4 < o1. Now a comparison of the d-dimensional Euclidean volumes
voly provides

v (A Sj 1, (Up7) < 2% 1,.(U,7) (118)
4 VO s; \Up < 0102 O'sjVO s; \Up

and therefore N < (8/d(n))% 0102 - - - 05;. Using the definition of §(n) this yields
N <n. [ |
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Proof of Proposition 26

Proof We will completely ignore the fact that we are actually dealing with a
countable set of eigenvalues on a lattice and replace all summations by integrals
without further worry. Of course this is not accurate but still will give us the
correct rates for the entropy numbers.

Denote 1/A = (27r/v)d§ the size of a unit cell, i.e. A = (v/(27r))d§ the
density of lattice points in frequency space as given in section 6. Then we get
for infinitesimal volumes dV and numbers of points dN in frequency space

dV = Sq_1r*tdr and therefore dN = ASy_r¢ tdr (119)

(here S;_1 denotes the volume of the d — 1 dimensional unit sphere) leading to

1
N(r) = EASd,lrd. (120)
We introduce a scaling operator whose eigenvalues decay like a(w) = e zllellP
for 7 € [0,). It is straightforward to check that all these values lead to both
useful and admissible scaling operators. Now we will estimate the separate
terms in (82).

2 o0
H<\/>\_l> = /dN(w) >\2(w) = SdlA/ rd=152¢—(a=m)llw|l?
ai /jlle, a®(w) 0
2 —d (d\ _;
= SiAf(a—T) b )P (121)
Next we have y
1
In (n_m> =———Inn (122)
ASd,I’f'g
and
1 g N
In (a1 Sag - --aN(r)) - _m ]Zl Ina;
~ dr d/ w I a(w)dw (123)
0
r
= —dr d/ W Zopdw = - L d rP. (124)
0 2 2d+p
This leads to
Sd_lAF(i) . _d d T 4
on < 6O =575 Inf (@=7)"% sup exp (_W Inn— 575"

Computing the sup,cg+ yields
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and therefore

p

Sd—lAF(%) . _d T\ a5 (dip)d Imn '\ dtp
€n < 6CL0 — Tel[r(l)fa)(a—T) 2 exp [ — <§> b AS.. .
(127)
Already from this expression one can observe the rate bounds on ¢,. What

remains to be done is to compute the inf;. This can be done by differentiating
(127) w.r.t. 7. For increased clarity of exposition define

P
(d+p)d lnn \d+
T, = (P 12
A ( )l an (128)

which leads to the optimality condition on 7

tp

d
d+p wi
2Tnp2 » with 7 € (0, ¢ (129)

(o — T)T_d%fo =

which can be solved numerically.

D Maple code to compute n(r,d)

# This code defines a function t where
# t(m,d) is number of points on a sphere of radius~2=m from Z°d
h:=n->eval (‘if ¢ (isolve(m~2=n,m)=NULL,0, ‘if‘(n=0,1,2)),1):
powseries [powcreate] (theta(n)=h(n)):
t:=(m,d)->
coeff (convert (powseries[tpsform] (powseries[evalpow] (theta~d),
x,m+1) ,polynom) ,x,m):
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