
UNCORRECTED P
ROOF

FSS4046
pp: 1--11 (col.fig.: Nil)

PROD. TYPE: COM
ED: DK

PAGN: Suresh -- SCAN: VKumar

ARTICLE IN PRESS

Fuzzy Sets and Systems ( ) –
www.elsevier.com/locate/fss

1

Support vector fuzzy regression machines

Dug Hun Honga ;∗, Changha Hwangb3
aSchool of Mechanical and Automotive Engineering, Catholic University of Daegu, 330 Keumrak 1-ri Hayang-up

Kyongsan, Kyungbuk 712 - 702, South Korea5
bDepartment of Statistical Information, Catholic University of Daegu, Kyungbuk 712 - 702, South Korea

Received 3 August 2001; received in revised form 9 October 2001; accepted 28 October 20027

Abstract

Support vector machine (SVM) has been very successful in pattern recognition and function estimation9
problems. In this paper, we introduce the use of SVM for multivariate fuzzy linear and nonlinear regression
models. Using the basic idea underlying SVM for multivariate fuzzy regressions gives computational e2ciency11
of getting solutions.
c© 2002 Published by Elsevier Science B.V.13
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1. Introduction15

Linear regression models are widely used today in business, administration, economics, engineer-
ing, as well as in many other traditionally nonquantitative 9elds such as social, health, and biological17
sciences. In all cases of fuzzy regression, the linear regression is recommended for practical situ-
ations when decisions often have to be made on the basis of imprecise and/or partially available19
data. Many di:erent fuzzy regression approaches have been proposed. Fuzzy regression, as 9rst de-
veloped by Tanaka et al. [14] in a linear system, is based on the extension principle. Tanaka et al.21
[14] initially applied their fuzzy linear regression procedure to nonfuzzy experimental data. In the
experiments that followed this pioneering e:ort, Tanaka et al. [15] used fuzzy input experimental23
data to build fuzzy regression models. Fuzzy input data used in these experiments were given in
the form of triangular fuzzy numbers. The process is explained in more detail by Dubois and Prade25
[10]. A technique for linear least-squares 9tting of fuzzy variable was developed by Diamond [7,8]
giving the solution to an analog of the normal equation of classical least squares. A collection of27
recent papers dealing with several approaches to fuzzy regression analysis can be found [12].
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In contrast to fuzzy linear regression, there have been only a few articles on fuzzy nonlinear1
regression. What researchers in fuzzy nonlinear regression were concerned with was data of the
form with crisp inputs and fuzzy output. However, some papers, for example [2,3,5], were concerned3
with the data set with fuzzy inputs and fuzzy output. By the way, in this paper we will treat fuzzy
nonlinear regression for data of the form with crisp inputs and fuzzy output.5

In this paper, we discuss multivariate fuzzy linear and nonlinear regression by support vector
machine (SVM). SVM has been recently introduced for solving pattern recognition and function7
estimation problems [1,4,6,9,11,13,16–18]. SVM is a nonlinear generalization of the Generalized
Portrait algorithm developed in Russia in the 1960s. In its present form, the SVM was developed at9
AT&T Bell Laboratories by Vapnik and co-workers. Due to this industrial context, SVM research has
up to date had a sound orientation towards real-world applications. SVM learning has now evolved11
into an active area of research. Moreover, it is in the process of entering the standard methods
toolbox of machine learning. SVM is based on the idea of structural risk minimization, which shows13
that the generalization error is bounded by the sum of the training set and a term depending on the
Vapnik–Chervonenkis dimension. By minimizing this bound, high generalization performance can15
be achieved. Moreover, unlike other machine learning methods, SVMs generalization error is not
related to the problem’s input dimensionality. This explains why SVM can have good performance17
even in high dimensional problem.

The main di:erence between our SVM approach and the nonlinear approaches by Buckley et al.19
[2,3] and Celmins [5] is not crisp input–fuzzy output versus fuzzy input–fuzzy output, but model-free
versus model-dependent.21

The rest of this paper is organized as follows. Section 2 illustrates the SVM regression procedures
for fuzzy multivariate linear models. Section 3 describes how to apply this idea to the fuzzy multi-23
variate nonlinear model with numerical inputs and fuzzy output. Section 4 gives some conclusions.

2. SVM fuzzy linear regression25

In this section, we will modify the underlying idea of SVM for the purpose of deriving the
convex optimization problems for multivariate fuzzy linear regression models. In Section 3 we will27
consider multivariate fuzzy nonlinear regression model for numerical inputs and fuzzy output. The
basic idea of SVM gives computational e2ciency in 9nding solutions of fuzzy regression models29
particularly for multivariate case. Here, we consider three di:erent models for multivariate fuzzy
linear regression.31

To do this we need some preliminaries. Let X = (m; �; �) be a triangular fuzzy numbers when m
is the model value of X and � and � are the left and right spreads respectively. If �= �, we can33
write X = (m; �). On the space T (R) of all triangular fuzzy numbers we use the metric d de9ned by

d(X; Y )2 = (mX − mY )2 + ((mX − �X ) − (mY − �Y ))2 + ((mX + �X ) − (mY + �Y ))2;35

where X = (mX ; �X ; �X ) and Y = (mY ; �Y ; �Y ) are any two vectors of triangular fuzzy numbers in
T (R). A linear structure is de9ned on T (R) by (mX ; �X ; �X ) + (mY ; �Y ; �Y ) = (mX + mY ; �X + �Y ; �X37
+ �Y ); t(m; �; �) = (tm; t�; t�) if t¿0, and t(m; �; �) = (tm; t�; t�) if t¡0.
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2.1. Case of fuzzy inputs and fuzzy output1

Suppose that observations consist of data pairs (Xi ; Yi); i= 1; : : : ; l, where Xi = ((mXi1 ; �Xi1 ; �Xi1); : : : ;
(mXid ; �Xid ; �Xid))∈T (R)d and Yi = (mYi ; �Yi ; �Yi)∈T (R). Here T (R) and T (R)d are the set of tri-3
angular fuzzy numbers and the set of d-vectors of triangular fuzzy numbers, respectively. Let
mX i = (mXi1 ; : : : ; mXid), �Xi = (�Xi1 ; : : : ; �Xid) and �Xi = (�Xi1 ; : : : ; �Xid).5

Now, we consider the following two models M1 and M2:

M1 : f(X) =B + 〈w;X〉; B ∈ T (R); w ∈ Rd;

M2 : f(X) = b + 〈w;X〉; b ∈ R; w ∈ Rd:

For computational simplicity we assume Xi ; Yi and B are symmetric triangular fuzzy numbers. Then7
model M1 can be rewritten as

M1 : f(X) = (〈w; mX〉 + mB; 〈|w|; �X〉 + �B);9

where |w|= (|w1|; |w2|; : : : ; |wd|). Now, we are going to consider how to get solutions for two models
M1 and M2. In fact, the model M2 is straightforward from the model M1.

11
Model M1: We arrive at the following convex optimization problem for the model M1 by mod-

ifying the basic idea of SVM for crisp linear regression [11,13,16–18].13

minimize
1
2
‖w‖2 + C

2∑
k=1

l∑
i=1

(�ki + �∗ki)

subject to




mYi − 〈w;mXi〉 − mB 6 � + �1i;

〈w;mXi〉 + mB − mYi 6 � + �∗1i;

(mYi − �Yi) − (〈w;mXi〉 + mB − 〈|w|; �Xi〉 − �B) 6 � + �2i ;

(〈w;mXi〉 + mB − 〈|w|; �Xi〉 − �B) − (mYi − �Yi) 6 � + �∗2i ;

�ki; �∗ki ¿ 0; k = 1; 2:

(1)

Then, constructing a Lagrange function and di:erentiating it with regard to mB; �B;w; �ki and �∗ki;
k = 1; 2, we can derive the corresponding dual optimization problem for model M1 as follows:15

maximize




− 1
2‖w‖2 − �

∑2

k=1

∑l

i=1
(�ki + �∗ki)

+
∑l

i=1
mYi(�1i − �∗1i) +

∑l

i=1
(mYi − �Yi)(�2i − �∗2i)

subject to
l∑

i=1

(�ki − �∗ki) = 0; �ki; �∗ki ∈ [0; C]; k = 1; 2;
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where1

w =
l∑

i=1

(�1i − �∗1i)mXi +
l∑

i=1

(�2i − �∗2i)(mXi − |�Xi |):

Solving the above equation under constraints determines the Lagrange multipliers �ki; �∗ki, and the3
optimal regression function is given by

f(X) =
l∑

i=1

(�1i − �∗1i)〈mXi ;X〉 +
l∑

i=1

(�2i − �∗2i)〈mXi − |�Xi |;X〉 + B: (2)
5

Now we need to 9nd mB and �B. By Karush–Kuhn–Tucker (KKT) conditions, we can compute
mB as follows:7 


�1i(� + �1i − mYi + 〈w;mXi〉 + mB) = 0;

�∗1i(� + �∗1i + mYi − 〈w;mXi〉 − mB) = 0;

(C − �1i)�1i = 0; (C − �∗1i)�
∗
1i = 0

and hence9 {
mB = mYi − 〈w;mXi〉 − � for �1i ∈ (0; C);

mB = mYi − 〈w;mXi〉 + � for �∗1i ∈ (0; C):

To 9nd �B we need to solve the optimization problem given below11

minimize
�B¿0

l∑
i=1

{|mYi − �Yi − (〈w;mXi〉 + mB − 〈w; �Xi〉 − �B)|�};

where �-insensitive loss function |�|� is de9ned by13

|�|� =

{
0 if |�|6 �;

|�| − � otherwise:

Model M2: Since the solution for the model M2 is straightforward from the model M1, we can15
easily get solutions as follows. Here the objective function to be maximized is the same as the one
for the model M1 but constraints are a little bit di:erent. We can compute w, mB and �B in the17
same way as the one in the model M1

maximize




− 1
2‖w‖2 − �

∑2

k=1

∑l

i=1
(�ki + �∗ki)

+
∑l

i=1
mYi(�1i − �∗1i) +

∑l

i=1
(mYi − �Yi)(�2i − �∗2i)

subject to
2∑

k=1

l∑
i=1

(�ki − �∗ki) = 0 and �ki; �∗ki ∈ [0; C]; k = 1; 2:
19
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Table 1
Fuzzy input–fuzzy output data

Y = (mY ; �Y ) X = (mX ; �X )

(−1:6; 0:5) (1, 0.5)
(−1:8; 0:5) (3, 0.5)
(−1:0; 0:5) (4, 0.5)
(1.2, 0.5) (5.6, 0.8)
(2.2, 1.0) (7.8, 0.8)
(6.8, 1.0) (10.2, 0.8)
(10.0, 1.0) (11.0, 1.0)
(10.0, 1.0) (11.5, 1.0)
(10.0, 1.0) (12.7, 1.0)

Table 2

Model � C Coe2cient Residual sum

M1 0 500 B= (−2:457; 0:071); w= 0:857 95.314
M2 0.01 500 b= − 5:507; w= 1:239 50.338

For this model b is exactly same as mB for the model H1 and hence1 {
mB = mYi − 〈w;mXi〉 − � for �1i ∈ (0; C);

mB = mYi − 〈w;mXi〉 + � for �∗1i ∈ (0; C):

Example 1. From Gunn [11], data were constructed using the original xi, yi and symmetric fuzzi9ed3
Xi, Yi as shown in Table 1. Using the data in Table 1, the obtained results are shown in Table 2.
In this example � and C are heuristically determined. In fact, the values of C¿500 give almost5
same results. However, results depend highly on the value of �.

2.2. Case of numerical inputs and fuzzy output7

Suppose that data pairs (xi ; Yi); i= 1; 2; : : : ; l are observed where each xi is d-vector of real
numbers and each Yi∈T (R). Let xij be element of xi. Then, we assume xij¿0 by simple translation9
of all vectors.

Let W= (W1; W2; : : : ; Wd), where Wi = (mWi ; �Wi ; �Wi); �Wi ; �Wi¿0; i= 1; : : : ; d and let B= (mB; �B;11
�B); �B; �B¿0. We now consider the following model:

M3 : f(x) =B + 〈W; x〉; B ∈ T (R); W ∈ T (R)d; x ∈ Rd

=B + W1x1 + W2x2 + · · · + Wdxd;

where T (R)d is the set of d-vectors of triangular fuzzy numbers.13
We de9ne ‖W‖2 = ‖mW‖2 + ‖mW − �W‖2 + ‖mW + �W‖2, where mW= (mW1 ; : : : ; mWd), �W =

(�W1 ; : : : ; �Wd) and �W = (�W1 ; : : : ; �Wd). Then, we arrive at the following convex optimization15
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problem for model M3 as follows:1

minimize
1
2
‖W‖2 + C

3∑
k=1

l∑
i=1

(�ki + �∗ki)

subject to




mYi − (〈mW; xi〉 + mB) 6 � + �1i ;

(〈mW; xi〉 + mB) − mYi 6 � + �∗1i ;

(mYi − �Yi) − (〈mW; xi〉 + mB − 〈�W ; xi〉 − �B) 6 � + �2i ;

(〈mW; xi〉 + mB − 〈�W ; xi〉 − �B) − (mYi − �Yi) 6 � + �∗2i ;

(mYi + �Yi) − (〈mW; xi〉 + mB + 〈�W ; xi〉 + �B) 6 � + �3i;

(〈mW; xi〉 + mB + 〈�W ; xi〉 + �B) − (mYi + �Yi) 6 � + �∗3i;

�ki; �∗ki ¿ 0; k = 1; 2; 3:

Then, constructing a Lagrange function and di:erentiating it with regard to mB; �B; �B, mW; �W ; �W ; �ki
and �∗ki; k = 1; 2, we can get3

mW =
l∑

i=1

(�1i − �∗1i)xi;

�W =
l∑

i=1

[(�1i − �∗1i) − (�2i − �∗2i)]xi ;

�W =
l∑

i=1

[(�3i − �∗3i) − (�1i − �∗1i)]xi

and in e:ect can derive the corresponding dual optimization problem for model M3 as follows:

maximize




− 1
2

∑3

k=1

∑l

i;j=1
(�ki − �∗ki)(�kj − �∗kj)〈xi ; xj〉

−�
∑3

k=1

∑l

i=1
(�ki + �∗ki) +

∑l

i=1
mYi(�1i − �∗1i)

+
∑l

i=1
(mYi − �Yi)(�2i − �∗2i) +

∑l

i=1
(mYi + �Yi)(�3i − �∗3i)

subject to



∑l

i=1
(�ki − �∗ki) = 0; k = 1; 2; 3;

�ki; �∗ki ∈ [0; C]; k = 1; 2; 3; i = 1; : : : ; l:
5
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Let us de9ne �′Wk
= max{�Wk ; 0} and �′Wk

= max{�Wk ; 0} for k = 1; : : : ; d. Now we de9ne two1
vectors �′W = (�′W1

; : : : ; �′Wd
) and �′W = (�′W1

; : : : ; �′Wd
). Then we have

f(x) =B + 〈W′; x〉
=B + (〈mW; x〉; 〈�′W ; x〉; 〈�′W ; x〉);

where W′ = (mW; �′W ; �
′
W ).3

If �Wi¿0 and �Wi¿0 for i= 1; 2; : : : ; d, then we have

f(x) =B +

(
l∑

i=1

(�1i − �∗1i)〈xi ; x〉;
l∑

i=1

[(�1i − �∗1i) − (�2i − �∗2i)]〈xi ; x〉;

l∑
i=1

[(�3i − �∗3i) − (�1i − �∗1i)]〈xi ; x〉
)
:

Now we need to 9nd mB; �B and �B. By KKT conditions, we can compute mB as follows:5 

�1i(� + �1i − mYi + 〈w;mXi〉 + mB) = 0;

�∗1i(� + �∗1i + mYi − 〈w;mXi〉 − mB) = 0;

(C − �1i)�1i = 0; (C − �∗1i)�
∗
1i = 0

and hence{
mB = mYi − 〈w;mXi〉 − � for �1i ∈ (0; C);

mB = mYi − 〈w;mXi〉 + � for �∗1i ∈ (0; C):

To 9nd �B; �B we need to solve the optimization problem given below7

minimize
�B;�B¿0

l∑
i=1

|mYi − �Yi − 〈mW − �′W ; xi〉 − mB + �B|�

+
l∑

i=1

|mYi + �Yi − 〈mW + �′W ; xi〉 − mB − �B|�:

Example 2. From Gunn [11], data were constructed using the original xi, yi and symmetric fuzzi9ed9
Yi as shown in Table 3. Using this data set, the obtained results are shown in Table 4.

In this example �= 0:001 and C = 500 are used but it is heuristically determined. In fact, the11
values of � near 0 and C¿500 give almost same results. As seen from Table 4, we think this model
is not appropriate for this particular data set because residual sum is too big.13
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Table 3
Real input–fuzzy output data

Y = (mY ; �Y ) x

(−1:6; 0:5) 1
(−1:8; 0:5) 3
(−1:0; 0:5) 4
(1.2, 0.5) 5.6
(2.2, 1.0) 7.8
(6.8, 1.0) 10.2
(10.0, 1.0) 11.0
(10.0, 1.0) 11.5
(10.0, 1.0) 12.7

Table 4

Model � C Coe2cient Residual sum

M3 0.001 500 B= (−5:451; 0; 0); W = (1:217; 0:508; 0:508) 269.514

3. SV fuzzy nonlinear regression1

There have been only a few articles for fuzzy nonlinear regression. What researchers in fuzzy
nonlinear regression were concerned with was data of the form with crisp inputs and fuzzy output.3
Some papers, for example [1,2,5], were concerned with the data set with fuzzy inputs and fuzzy
output. However, we think those fuzzy nonlinear regression methods look somewhat unrealistic and5
treat the estimation procedures of some particular models such as linear, polynomial, exponential and
logarithmic. In this paper, we treat fuzzy nonlinear regression for data of the form with numerical7
inputs and fuzzy output, without assuming the underlying model function. In other words, we extend
the linear model M3 to the nonlinear case Fig. 1.9

To do this, we will use the idea of SVM for crisp nonlinear regression [11,13,16–18]. The basic
idea is that a nonlinear regression function is achieved by simply preprocessing input patterns xi11
by a map " : Rd → F into some feature space F and then applying the standard ridge regression
learning algorithm. Notice that the only way in which the data appears in algorithm for the model13
M3 is in the form of inner products 〈xi ; xj〉. The algorithm would only depend on the data through
inner products in F, i.e. on functions of the form 〈"(xi);"(xj)〉. Hence it su2ces to know and use15
K(xi; xj) = 〈"(xi);"(xj)〉 instead of "(·) explicitly. The well used kernels for regression problem
are given below17

K(x; y) = (〈x; y〉 + 1)p: Polynomial kernel;

K(x; y) = e−
‖x−y‖2

2�2 : Gaussian kernel;

K(x; y) = tanh( 〈x; y〉 + !): Hyperbolic tangent kernel:
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Fig. 1. The SVM fuzzy regression model M2 with �X = 0:75.

Hence, by replacing 〈x; y〉 with K(x; y) we obtain the following dual optimization problem:1

maximize




− 1
2

∑3

k=1

∑l

i;j=1
(�ki − �∗ki)(�kj − �∗kj)K(xi ; xj);

−�
∑3

k=1

∑l

i=1
(�ki + �∗ki) +

∑l

i=1
mYi(�1i − �∗1i);

+
∑l

i=1
(mYi − �Yi)(�2i − �∗2i) +

∑l

i=1
(mYi + �Yi)(�3i − �∗3i):

Here we should notice that the constraints are unchanged

l∑
i=1

(�ki − �∗ki) = 0; k = 1; 2; 3;

�ki; �∗ki ∈ [0; C]; k = 1; 2; 3:

If
∑l

i=1[(�1i−�∗1i)−(�2i−�∗2i)]K(xi ; xj)¿0 and
∑l

i=1[(�3i−�∗3i)−(�1i−�∗1i)]K(xi ; xj)¿0; j = 1; : : : ; l,3
then we have

f(x) =B +

(
l∑

i=1

(�1i − �∗1i)K(xi; x);
l∑

i=1

[(�1i − �∗1i) − (�2i − �∗2i)]K(xi ; x);

l∑
i=1

[(�3i − �∗3i) − (�1i − �∗1i)]K(xi ; x)

)
:

Now we need to 9nd mB, �B and �B. By KKT conditions, we can compute mB as follows:5 

mB = mYi −

∑l

j=1
(�1j − �∗1j)K(xj; xi) − � for �1i ∈ (0; C);

mB = mYi −
∑l

j=1
(�1j − �∗1j)K(xj; xi) + � for �∗1i ∈ (0; C);
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Fig. 2. The SV fuzzy nonlinear regression model.

To 9nd �B; �B we need to solve the optimization problem given below1

minimize
�B;�B¿0

l∑
i=1

∣∣∣∣∣∣mYi − �Yi −
l∑

j=1

(�2j − �∗2j)K(xj; xi) − mB + �B

∣∣∣∣∣∣
�

+
l∑

i=1

∣∣∣∣∣∣mYi + �Yi −
l∑

j=1

(�3j − �∗3j)K(xj; xi) − mB − �B

∣∣∣∣∣∣
�

:

Example 3. We now apply fuzzy nonlinear regression model to the data in Table 3. According to3
Gunn [11], the nonlinear regression model is appropriate for the original crisp data of Table 3. When
we apply fuzzy nonlinear regression model to this data set, we have the residual sum 0.833 and bias5
term B= (3:028; 0:875; 0:515). Hence we can recognize fuzzy nonlinear model is more appropriate
than the linear model M3. For this data set we use Gaussian kernel with �= 1:0 and C = 500. These7
parameters are determined in the heuristic way Fig. 2.

4. Conclusion9

In this paper, we have presented a SVM strategy for fuzzy multivariable linear and nonlinear
regressions. The experimental results show that the SVM algorithm for fuzzy regression models11
derives the satisfying solutions and is an attractive approach to modeling fuzzy data. The algorithm
combines generalization control with a technique to address the curse of dimensionality, which makes13
SVM solution not to depend directly on the dimensionality of the input space. The main formulation
results in a global quadratic optimization problem with box constraints. However, this is not a15
computationally expensive way. The examples we considered here are too simple. SVM probably
has greatest use when the dimensionality of the input space is high. We thus need to conduct real-life17
examples with several inputs.

There have been some papers treat fuzzy nonlinear regression models. They usually assume19
the underlying model functions even for data of the form with numerical inputs and fuzzy out-
put. The proposed algorithm here is model-free method in the sense that we do not have to assume21
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the underlying model function. This model-free method turned out to be a promising method which1
has been attempted to treat fuzzy nonlinear regression model with numerical inputs and fuzzy output.
The main di:erence between our SVM approach and the nonlinear approaches by Buckley et al.3
[2,3] and Celmins [5] is not crisp input–fuzzy output versus fuzzy input–fuzzy output, but model-free
versus model-dependent.5

Here we use kernel parameter � and control parameter C determined in a heuristic way. The
obvious question that arises is which are the best for a particular problem? Hence we need model7
selection method to determine these parameters.
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