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Support Vector Machine With Adaptive Parameters in
Financial Time Series Forecasting

L. J. Cao and Francis E. H. Tay

Abstract—A novel type of learning machine called support compared to most of the parametric models. Neural networks
vector machine (SVM) has been receiving increasing interest in gre also more noise tolerant, having the ability to learn complex
areas ranging from its original application in pattern recognition systems with incomplete and corrupted data. In addition, they
to other applications such as regression estimation due to its . . !
remarkable generalization performance. This paper deals with are more flexible and. have the capab|!|ty to learn dynamic sys-
the application of SVM in financial time series forecasting. t€ms through a retraining process using new data patterns. So
The feasibility of applying SVM in financial forecasting is first neural networks are more powerful in describing the dynamics
examined by comparing it with the multilayer back-propagation  of financial time series in comparison to traditional statistical
(BP) neural network and the regularized radial basis function models [10]-[12].

(RBF) neural network. The variability in performance of SVM R fl 't £l . hi led th
with respect to the free parameters is investigated experimentally. ecently, a novel type ot learning machine, calle € Ssup-

Adaptive parameters are then proposed by incorporating the POrt vector machine (SVM), has been receiving increasing at-
nonstationarity of financial time series into SVM. Five real futures  tention in areas ranging from its original application in pattern
contracts collated from the Chicago Mercantile Market are used as  recognition [13]-[15] to the extended application of regression
the data sets. The simulation shows that among the three methOds'estimation [16]-[19]. This was brought about by the remark-
SVM outperforms the BP neural network in financial forecasting, ble ch teristi .fSVM h d lizati f
and there are comparable generalization performance between able charactenistics o SUC_ _as good generalization per o_r-
SVM and the regularized RBF neural network. Furthermore, the ~Mance, the absence of local minima, and sparse representation
free parameters of SVM have a great effect on the generalization of solution. SVM was developed by Vapnik and his coworkers
performance. SVM with adaptive parameters can both achieve jn 1995 [20], and it is based on tiseructural risk minimization
higher generalization performance and use fewer support vectors (SRM) principle which seeks to minimize an upper bound of the
than the standard SVM in financial forecasting. L L L
generalization error consisting of the sum of the training error
~ Index Terms—Back-propagation (BP) neural network, nonsta- and a confidence interval. This induction principle is different
tionarity, regularized radial basis function (RBF) neural network, from the commonly useeémpirical risk minimization(ERM)
support vector machine (SVM). . . L - .
principle which only minimizes the training error. Established
on the unique principle, SVM usually achieves higher gener-
|. INTRODUCTION alization performance than traditional neural networks that im-
aplement the ERM principle in solving many machine learning
tionary [1], [2]. The nonstationary characteristic implie roblems. Another key characteristic of SVM is that training

that the distribution of financial time series changes over tim .VM IS eq.ulvalenélto soIvThg ?tlrllnearlly tg:onstfragﬁ\(ﬂj gualdranc
In the modeling of financial time series, this will lead to graduzﬂrogrammlng problem so that the solution o IS always

changes in the dependency between the input and output vHF]i-q“e and globally optimal, unlike other networks’ training

ables. Therefore, the learning algorithm used should take “ngch requires nonlinear optimization with the danger of getting
’ uck into local minima. In SVM, the solution to the problem is

account this characteristic. Usually, the information provided v d dent bset of training dat ints which

the recent data points is given more weight than that provid qy %p:en ent on atsu ste 0 U“’?"”'”g | ata pomts Wt Ic ?r:e

by the distant data points [3], [4], as in nonstationary financisf ©/'€d to as support vectors. LJsing only support vectors, the
e solution can be obtained as using all the training data

time series the recent data points could provide more import . ! L
information than the distantpdata points P P points. One disadvantage of SVM is that the training time scales

In recent years, neural networks have been successfully ugg@ewhere between quadratic and cubic with respect to the

for modeling financial time series [5]-[8]. Neural networks argumber of training samples. So a large amount of computa-

universal function approximators that can map any nonlineté?n time will be involved when SVM is applied for solving

function withouta priori assumptions about the properties ofth@r_?ﬁ.'sae prodble:ns..th th licati FSVMtoff ial t
data [9]. Unlike traditional statistical models, neural networks IS papergeais wi €application 0 ofinancialtime

are data-driven, nonparametric weak models, and they let * %ries fo_recgsti_ng. The fgasibility of applying_SVI_\/I in financigl
data speak for themselves.” Consequently, neural networks casting is first examined by comparing it with the muli-

less susceptible to the problem of model mis-specification grback—propagation (BP) neural network am_j the regularized
P P P radial basis function (RBF) neural network, which are the best

methods as reported in research. A more detailed description

INANCIAL time series are inherently noisy and nonst
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functional characteristics of SVM with respect to the free pa- To get the estimations afi andb, (2) is transformed to the
rameters in financial forecasting. Finally, adaptive parametgremal objective function (4) by introducing the positive slack
are proposed by incorporating the nonstationarity of financiedariablesf,f*) ((x) denotes variables with and withotjt

time series into SVM. The experiment carried out shows that the
SVM with adaptive parameters outperforms the standard SVM
in financial forecasting. There are also fewer converged support

l
minimize 1||w||2 + CZ (&+&)

vectors in the adaptive SVM, resulting in a sparser representa- =t
subject to
tion of the solution.
Section Il provides a brief introduction to SVM in regression yi—w-d(x) —b<e+&
approximation. Section Il presents the experimental results on w-p(x;)+b—y; <e+ &, 1=1,...,1
the comparison of SVM with the BP and RBF neural networks, 5(*) >0 4)

together with the experimental data sets and performance cri-

teria. Section IV discusses the experimental analysis of the freeFinally, by introducing Lagrange multipliers and exploiting
parameters of SVM. Section V describes the adaptive parathe optimality constraints, the decision function (1) has the fol-
eters that make the prediction more accurate and the solutiewing explicit form [20]:

sparser. Section VI concludes the work.

1
=> (a; zi, ) + b. (5)

=1

Il. SVM FORREGREESSIONESTIMATION In function (5), a(* are the so-called Lagrange multipliers. They

Compared to other neural network regressors, SVM has th&eé'Sfy the equalmes x aj =0, 0; > 0,anda} > 0 where
distinct characteristics when it is used to estimate the regrés 1,...,1, and they are obtained by maximizing the dual
sion function. First, SVM estimates the regression using a se UPCt'On of (4), which has the following form:
linear functions that are defined in a high-dimensional feature

l
space. Second, SVM carries out the regression estimationw’y(af.*>) = Zyl (a; — EZ a; +a}
risk minimization, where the risk is measured using Vapnik's ’ i=1 i=1
e-insensitive loss function. Third, SVM implements the SRM 1
principle which minimizes the risk function consisting of the —3 Z Z (a; —al) (aj — a;‘-) K(z;,x;) (6)
empirical error and a regularized term. i=1j=1

Given a set of data point$zi,y1), (22,92),--., (z1,y1)
(r; € X C R™, y; € Y C R, is the total number of training
samples) randomly and independently generated from an un- !
known function, SVM approximates the function using the Z (a; —aj) =0, 0<al” <0 i=1,..,1L
following form: i=1

with the following constraints:

K(z;,z;) is defined as the kernel function. The value of the
flz)=w-¢(z)+b (1) kernelis equal to the inner product of two vectersandz; in

the feature spacg(x;) and¢(z;), that is,K (z;,z;) = ¢(z;) -
where ¢(z) represents the high-dimensional feature spacggr;). The elegance of using the kernel function is that one
which is nonlinearly mapped from the input spacéhe coef- can deal with feature spaces of arbitrary dimensionality without
ficientsw andb are estimated by minimizing the regularizechaving to compute the map(z) explicitly. Any function that
risk function (2) satisfies Mercer’s condition [20] can be used as the kernel func-

tion. Common examples of the kernel function are the polyno-

mial kernelK (z;, z;) = (z; -z + 1)" and the Gaussian kernel

1 1
minimize §||w||2 +C7 > L (yi, f(24)) () K(zi,z;) = exp(—(1/0?)(x; — z;)°), whered ando? are the
i=1 kernel parameters.
L.(ys, f(xi)):{|yi—f(xi)|—67 lyi—f(zi) 2 (3  Based on the Karush-Kuhn-Tucker (KKT) conditions [23],
’ 0, otherwise. only a number of coefficient$a; — a}) in (5) will assume

nonzero values, and the corresponding training data points have
The first term||w||? is called the regularized term. Minimizing approximation errors equal to or larger tharand are referred
|lw||?> will make a function as flat as possible, thus playingo as support vectors. According to function (5), it is evident
the role of controlling the function capacity. The second terthat only the support vectors are used to determine the decision
(1/1) 22:1 L.(y:, f(z;) is the empirical error measured by thdunction as the values dfi; — a}) for the other training data
e-insensitive loss function (3). This loss function provides thgoints are equal to zero. As support vectors are usually only a
advantage of using sparse data points to represent the desigsmedll subset of the training data points, this characteristic is re-
function (1).C is referred to as the regularization constarit  ferred to as the sparsity of the solution.
called the tube size. They are both user-prescribed parametersrom the implementation point of view, training SVM
and determined empirically. is equivalent to solving the linearly constrained quadratic
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TABLE | 0.08
FIvE FUTURES CONTRACTS AND THEIR CORRESPONDINGTIME PERIODS

o
o
<

Futures Time period

o
o
2]

CME-SP 04/01/1988 — 11/07/1995

e
=]
a

CBOT-US 01/10/1990 — 24/04/1998

CBOT-BO 01/06/1989 — 11/12/1996

Relative frequency
o
(=]
»

©
o
@

EUREX-BUND 02/01/1991 - 06/08/1998

4
o
o

MATIF-CAC40 25/12/1991 - 30/06/1999

°
o
=

programming problem (6) with the number of variables twice 0 5 10 15 20 25 30 35
as that of the number of training data points. The sequenti... Number of bins

minimal optimization (SMO) algorithm extended by Scholkopf ()

and Smola [24], [25] is very effective in training SVM for .16
solving the regression estimation problem.

0.14}

IIl. THE FEASIBILITY OF APPLYING SUPPORTVECTOR
MACHINE IN FINANCIAL FORECASITNG

A. Data Sets

Five real futures contracts collated from the Chicago Mer g ¢.0s}
cantile Market are examined in the experiment. They are tt £
Standard & Poor 500 stock index futures (CME-SP), Unite1§ 0.06
Sates 30-year government bond (CBOT-US), Unite State
10-year government bond (CBOT-BO), German 10-yea
government bond (EUREX-BUND), and French governmen
stock index futures (MATIF-CAC40). A subset of all available
data is used in the experiment to reduce the requirement of t 0
network design. The corresponding time periods used are list Number of bins
in Table I. The daily closing prices are used as the data sets. )

Choosing a suitable forecasting horizon is the first step in
financial forecasting. From the trading aspect, the forecastifilg- 1- Histograms. (a) Of CME-SP daily closing price. (b) Of RDP+5.
horizon should be sufficiently long so that the over-trading re-
sulting in excessive transaction costs could be avoided. Fréoneliminate the trend in price as the maximum value and the
the prediction aspect, the forecasting horizon should be shorinimum value is in the ratio of aboat: 1 in all of the five
enough as the persistence of financial time series is of limiteldta sets. The optimal length of the moving day is not critical,
duration. As suggested by Thomason [26], a forecasting horiziout it should be longer than the forecasting horizon of five days
of five days is a suitable choice for the daily data. As the precif§26]. EMA100 is used to maintain as much of the information
values of the daily prices is often not as meaningful to tradirgpntained in the original closing price as possible since the
as its relative magnitude, and also the high-frequency com@pplication of the RDP transform to the original closing price
nents in financial data are often more difficult to successfulipay remove some useful information. The output variable
model, the original closing price is transformed into a five-daRDP+5 is obtained by first smoothing the closing price with a
relative difference in percentage of price (RDP). As mentionddree-day exponential moving average, because the application
by Thomason, there are four advantages in applying this tran$-a smoothing transform to the dependent variable generally
formation. The most prominent advantage is that the distribenhances the prediction performance of neural networks [27].
tion of the transformed data will become more symmetrical arithe calculations for all the indicators are given in Table II.
will follow more closely to a normal distribution as illustrated The long left tail in Fig. 1(b) indicates that there are outliers
in Fig. 1. This modification to the data distribution will improvein the data set. As the Z-score normalization method [28] is
the predictive power of the neural networks. mostly suitable for normalizing the time series containing out-

The input variables are determined from four lagged RDIRrs, this method is used here to scale each data set. Then the
values based on five-day periods (RDP-5, RDP-10, RDP-Malk-forward testing routine [29] is used to divide each whole
and RDP-20) and one transformed closing price (EMA10@gta set into five overlapping training—validation—testing sets.
which is obtained by subtracting a 100-day exponential movirigach training—validation—testing set is moved forward through
average from the closing price. The subtraction is performéuke time series by 100 data patterns as shown in Fig. 2. In each

012

0.1}

uency

0.04

0.02

0 5 10 15 20 25 30 35
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| . Training Set I Validation Set = Testing Set

Fig. 2. Walk-forward testing routine to divide each whole data set into five overlapping training—validation-test sets.

TABLE 1l TABLE 1l
INPUT AND OUTPUT VARIABLES PERFORMANCEMETRICS AND THEIR CALCULATIONS
Indicator Calculation Metrics Calculation
EMA100 P(i)- EMA,, (i) NMSE 1 & N
lw aznz(yi_yi)z
. . . i1
RDP-5 (p(®) = p(i—5))/ p(i—5)*100
2 _ L N _ o2
RDP-10 (pli=5)= pli-10)/ p(i=10)*¥100 i ;(y" )
RDP-15 . . . _ o
(p(i—10—-p@i-15)/ p(i—15*100
1019 =3
RDP-20 (Pli-19)- pli~20)/ p(i~20/*100 -
MAE 1& A
RDP+5 — —— — =2y = v,
(p(i+5)- p@)/ p@i)*100 niz
- DS n
p0) = EMA,G) s,
n g
EMA, (i) is the n-day exponential moving average of the ith day AA
d =11 0i=y)0;=y,,)20
p(i) is the closing price of the ith day 0 otherwise

n is the total number of data patterns

of the five divided training-validation—testing sets, there are a  4pq ; represent the actual and predicted output value

total of 1000 data patterns in the training set, 200 data patterns

in both the validation set and the testing set. The training set is

used to train SVM and the neural networks, the validation setpgovides an indication of the correctness of the predicted direc-
used to select the optimal parameters of SVM and prevent timn of RDP+5 given in the form of percentages (a larger value
overfitting problem in the neural networks. The testing set &iggests a better predictor). A detailed description of the perfor-
used for evaluating the performance. The comparison of SVRhance metrics in financial forecasting can be referred to [30].
the BP neural network, and the regularized RBF neural network

in each futures contract is based on the averaged results on@heExperimental Results

testing sets. When applying SVM to financial forecasting, the first thing
o that needs to be considered is what kernel function is to be
B. Performance Criteria used. As the dynamics of financial time series are strongly

The prediction performance is evaluated using the followimpnlinear [31], it is intuitively believed that using nonlinear
statistical metrics, namely, the normalized mean squared erkernel functions could achieve better performance than the
(NMSE), mean absolute error (MAE), and directional symmetiinear kernel. In this investigation, the Gaussian function is
(DS). The definitions of these criteria can be found in Table llused as the kernel function of SVM, because Gaussian kernels
NMSE and MAE are the measures of the deviation between ttemd to give good performance under general smoothness
actual and predicted values. The smaller the values of NM@Esumptions. Consequently, they are especially useful if no
and MAE, the closer are the predicted time series values to #mditional knowledge of the data is available [24]. This is
actual values (a smaller value suggests a better predictor). &80 demonstrated in the experiment by comparing the results
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1.1 T T T T

obtained using the Gaussian kernel with results obtained usi
the polynomial kernel. The polynomial kernel gives inferior
results and takes a longer time in the training of SVM. Thi
second thing that needs to be considered is what values of 1,
kernel parameterst, C, ande) are to be used. As there is no ¢
structured way to choose the optimal parameters of SVM, tt§
values of the three parameters that produce the best result€
the validation set are used for SVM. These values could va/€
for futures due to different characteristics of the futures. Th% 0.905|
SMO for solving the regression problem is implemented it
this experiment and the program is developed using thé VC ‘é’
language. 09t
A standard three-layer BP neural network is used as a benc

mark. There are five nodes in the input layer, which is equal t

BP

the number of indicators. The output node is equal ishereas %85 00 200 300 00 s00  soo 700 800
the number of hidden nodes is determined based on the valic 10°Epochs

tion set. This procedure is very simple. The number of hidden @)

nodes is varied from a small value (say, three) to a reasonably

big value (say, 30). For each chosen number of hidden nodes, 116

BP neural network is trained, and the averaged erroronthe vi 44|
idation sets is estimated. After the above procedure is repeat

for every number of hidden nodes, the number of hidden nod,
that produces the smallest averaged error on the validationset's 1.1}
used, which could vary between different data sets. The learnii §
rate is also chosen based on the validation set. The hidden noé“
use the sigmoid transfer function and the output node uses I-‘:g 1061
linear transfer function. The stochastic gradient descent meth 2 , ,|
is used for training the BP neural network as it could give bette s
performance than the batch training for large and nonstationa§
data sets. In the stochastic gradient descent training, the weig= 1}
and the biases of the BP neural network are immediately u
dated after one training sample is presented. The BP softwe
used is directly taken from Matlab 5.3.0 neural network toolbox 0.9

1.12¢ BP

1.08

1.02

100 200 300 400 500 600

In the training of the BP neural network, the number of epoch 10*Epochs
is first chosen as 6000 as there is no prior knowledge of this ()

value before the experiment. The behavior of the NMSE is given _ _ .
in Fig. 3. In BP, itis evident that the NMSE on the training set d&;2;, 5.~ The behavior of NMSE in BP. (@) On the training set. (b) On the
creases monotonically during the entire training period. In con- '
trast, the NMSE on the validation set decreases for the first few
hundreds epochs but increases for the remaining epochs. TH¥ is the performance of SVM relative to that of the regular-
indicates that overfitting has occurred in the BP network. Hendéed RBF neural network. The regularized RBF neural network
in the later training, the procedure of “early stopping trainingoftware used is developed by Mullet al. [19], and can be
is used for the BP neural network. That is, the validation err§@wnloaded from http://www.kernel-machines.org. In the reg-
is calculated after every presentation of five training samples Ufgrized RBF neural network, the centers, the variances, and
the validation error is increasing for a few (say, five) times, tH&e output weights are all adjusted [33]. The number of hidden
training of the BP neural network will be stopped. This reducd¥des and the regularization parameter are chosen based on the
the possibility of the overfitting. This procedure of training th&alidation set. In a similar way as used in the BP neural net-
BP neural network is used for all the data sets. In comparisd¥ork, the procedure of “early stopping training” is also used in
for the SVM, the NMSE on both the training set and the validdbe regularized RBF neural network for avoiding the overfitting
tion set fluctuate during the initial training period but graduallproblem.
converge to a constant value, as illustrated in Fig. 4. The results are collated and the averages of the best five
In addition, the regularized RBF neural network [32] is alstecords obtained in 30 trials on the training set are given
used as the benchmark. The regularized RBF neural netwarkTable IV. From the table, it can be observed that in all
minimizes the risk function which also consists of the empirictélhe futures contracts, the largest values of NMSE and MAE
error and a regularized term, derived from Tikhonov's regulaare in the RBF neural network. In CME-SP, CBOT-US, and
ization theory used for solving ill-posed problems. But the ofsUREX-BUND, SVM has smaller values of NMSE and MAE,
timization methods used in the regularized RBF neural netwadbpkit larger values of DS than BP. In the futures of CBOT-BO
are different from those of SVM. So it is very interesting to seend MATIF-CACA40, the reverse is true.
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TABLE IV

RESULTS ON THETRAINING SET

Futures

SVM

RBF

BP

NMSE

MAE

DS

NMSE

MAE

DS

NMSE

MAE

DS

CME-SP

0.9577

0.7918

48.80

0.9928

0.8184

48.97

0.9609

0.8057

43.86

CBOT-US

0.7796

0.6444

53.91

0.9847

0.7998

45.67

0.9483

0.7813

46.40

CBOT-BO

0.9752

0.7650

34.17

0.9864

0.7896

43.44

0.9262

0.7530

43.14

EUREX-BUND

0.8354

0.7333

48.87

0.9847

0.8204

43.68

0.8877

0.7685

45.86

MATIF-CAC40

0.9687

0.7912

49.14

0.9871

0.8065

49.24

0.9357

0.7833

49.25

1511

35

3F SVM

25}

NMSE on the training set in SVM
N

0 2000 4000 6000 8000 10000
100*Epochs
(a)

12000

45} SVM

NMSE on the validation set in SVM
w

0 2000 4000 6000 8000 10000
100*Epochs
(b)

12000

Among the three methods, the smallest values of NMSE and
MAE occurred in SVM, followed by the RBF neural network.

In terms of DS, the results are comparable among the three
methods.

The results on the testing set are given in Table VI. The table
shows that in four of the studied futures (CME-SP, CBOT-BO,
EUREX-BUND, and MATIF-CACA40), the smallest values of
NMSE and MAE are found in SVM, followed by the RBF
neural network. In CBOT-US, BP has the smallest NMSE and
MAE, followed by RBF. The results are comparable among the
three methods in terms of DS. A pairedest [34] is performed
to determine if there is significant difference among the three
methods based on the NMSE of the testing set. The calculated
t-value shows that both SVM and RBF outperform BP with
a = 5% significance level for a one-tailed test, and there is no
significant difference between SVM and RBF.

IV. EXPERIMENTAL ANALYSIS OF PARAMETERS

In the earlier experiments, the kernel paraméteiC, ande
are selected based on the validation set. Making use of a valida-
tion setis still not a structured way to select the optimal values of
the free parameters as this iterative process involves numerous
trial and errors. In this section, the NMSE and the number of
support vectors with respect to the three free parameters are in-
vestigated by varying one free parameter at a time. Although
this approach is completely suboptimal for choosing the optimal
values of the free parameters, it is still useful for investigating
the performance of SVM with respect to different values of the
free parameters. Only the results of CME-SP are illustrated as
the same can be applied to the other data sets.

Fig. 5(a) gives the NMSE of SVM at variou$, in whichC
ande are, respectively, fixed &and0.05. The figure shows that
the NMSE on the training set increases with On the other
hand, the NMSE on the validation set decreases initially but

Fig. 4. The behavior of NMSE in SVM. (a) On the training set. (b) On théubsequently increases @sincreases. This indicates that too

validation set.

small a value ob? (1-100) causes SVM to overfit the training
data while too large a value @? (10000-1 000 000) causes

The results on the validation set are given in Table V. As e$VM to underfit the training data. An appropriate value §or
pected, the results of the validation set are worse than thosevofuld be between 100 and 10 000. In this respect, it can been
the training set in terms of NMSE. All the values of NMSEsaid thats? plays an important role on the generalization per-
are near or larger thah.0, indicating financial data sets areformance of SVM. Fig. 5(b) shows that the number of support
very noisy and financial forecasting is a very challenging taskector decreases initially and then increases Withs most of
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TABLE V
RESULTS ON THEVALIDATION SET
Futures SVM RBF BP
NMSE | MAE | DS NMSE | MAE | DS NMSE | MAE DS
CME-SP 0.9986 | 0.5372 | 48.14 1.0005 | 0.5436 | 48.94 1.0278 | 0.5502 | 45.52
CBOT-US 1.0053 | 0.8374 | 44.41 1.0242 | 0.8439 | 44.72 1.0274 | 0.8464 | 44.42
CBOT-BO 0.9881 | 0.7711 | 40.29 1.0204 | 0.7728 | 42.31 1.0325 | 0.7789 | 41.90
EUREX-BUND 0.9346 | 0.7848 | 46.63 | 0.9464 | 0.7960 | 46.43 | 09877 | 0.8175 | 43.52
MATIF-CAC40 1.0193 1.0368 | 40.70 1.0302 1.0671 | 45.73 1.0566 | 1.0708 | 44.22

TABLE VI
RESULTS ON THETESTING SET

Futures SVM RBF BP

NMSE | MAE | DS NMSE MAE | DS NMSE MAE DS

CME-SP 1.0635 | 0.5403 | 45.72 | 1.0644 0.5422 | 48.74 | 1.0708 0.5454 | 43.31
CBOT-US 1.0287 | 0.8159 | 47.23 | 1.0256 0.8071 | 43.92 | 1.0245 0.8057 | 45.62
CBOT-BO 1.0199 | 0.6936 | 38.99 | 1.0288 0.6970 | 39.90 | 1.0658 0.7385 | 39.09

EUREX-BUND 0.9938 | 0.6875 | 45.72 | 1.0134 0.7103 | 43.42 | 1.0513 0.7111 | 46.03

MATIF-CACA40 09949 | 1.1736 | 42.71 | 1.0003 1.1794 | 46.23 | 1.0316 1.1838 | 44.22

. 1.4593 2.1927>;0_05.4 =2.132

t -value
1.4593 2.4360>1 , =2.132

the training data points are converged to the support vectorsliat the performance of SVM is insensitivedoHowever, ac-
the overfitting and underfitting cases. cording to [17], whethete has an effect on the generalization
Fig. 6 gives the results of various whereé? is chosen as error depends on the input dimension of the data set. So this re-
100 based on the last experiment anid still fixed at0.05. It sult cannot be generalized for usual cases. The number of sup-
can been observed that the NMSE on the training set decregse vectors decreasesasicreases, especially whets larger
monotonically a€” increases. In contrast, the NMSE on the vakhan0.01 as illustrated in Fig. 7(b). This is consistent with the
idation setfirst decreases whéhs increased from.01toland result obtained in [20] that the number of support vector is found
then starts to increase whéhincreases beyontl The reason to be a decreasing function ef
lies in that a small value fof’ will underfit the training data
because the weight placed on the training data is too small thus
resulting in large values of NMSE on both the training and val-
idation sets. On the contrary, whe&his too large, SVM will
overfit the training set, leading to a deterioration in the gener- From the results reported in the last section, it can be observed
alization performance. Similarly, the number of support vectotisat the performance of SVM is sensitive to the regularization
also first slightly decreases @s increases and then keeps ineonstant’, with a smallC' underfitting the training data points
creasing wher€ increases again, as is illustrated in Fig. 6(band a largeC' overfitting the training data points. In addition,
This means that there are more support vectors in the overfittitg number of support vectors is related to the tube size
and underfitting cases. largee reduces the number of converged support vectors without
Fig. 7 gives the results of SVM with variouswheres? and  affecting the performance of SVM, thus causing the solution to
C are, respectively, fixed at 100 and 1. Fig. 7(a) shows that the represented very sparsely. Based on this, adaptive parameters
NMSE on both the training set and the validation set is veare proposed in this section by incorporating the nonstationarity
stable and relatively unaffected by changes.iithis indicates of financial time series into SVM.

V. SUPPORTVECTOR MACHINE WITH ADAPTIVE
PARAMETERS (ASVM)
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A. Modification of Paramete€

As shown in (4), the regularized risk function of SVM condata points than those of the distant training data points. In light
sists of two terms: the regularized term and the empirical erréf. this characteristic, the regularization constaéhaidopts the
The regularization constant determines the tradeoff betweerfollowing exponential function:
the two terms. Increasing the value ©f the relative impor-

l
tance of the empirical error with respect to the regularized term "

. . . i ) Easvm = C; (& + & 8
grows. By using a fixed value @ in the regularized risk func- ASVM ; (& + &) ®)
tion, SVM assigns equal weights to all theénsensitive errors B 9
between the actual and predicted values. For illustration, the em- C; = 9)

pirical error function in standard SVM is expressed by 1+exp (a —2ax 7)

! wherei represents the data sequence, with [ being the most
Esva = CZ (&G+&). (7) recent training data point and = 1 being the most distant
i=1 training data pointa is the parameter to control the ascending
However, in nonstationary financial time series, it is usuallsate. C; is called the ascending regularization constant as its
believed that the information provided by the recent trainingalue will increase from distant training data points to recent
data points is more important than that provided by the distamining data points.
training data points. Thus, it is beneficial to place more weight The behaviors of the weight function (9) are illustrated in
on thee-insensitive errors corresponding to the recent trainirfigig. 8, which can be summarized as follows.
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i) Whena — 0, thenlim,_.qC; = C. In this case, the

same weights are applied in all the training data points

andEasvm = Esvum.
i) Whena — oo, then
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B. Modification of Parametet

To make the solution of SVM sparseradopts the following
form:

1+exp(b—2bx1i/l)

5 (10)

g, =
wherei has the same meaning as in (8)s the parameter to
control the descending rate. is called the descending tube as
its value will decrease from the distant training data points to
the recent training data points.

Furthermore, the proposed adaptigvecould also place
more weights on the recent training data points than the
distant training data points. This can be explained from both
the approximation accuracy aspect and the characteristic of
the solution of SVM aspect. In SVM; is equivalent to the
approximation accuracy placed on the training data points.
A small e corresponds to a large slack variabfé) and high
approximation accuracy. On the contrary, a larg@rresponds
to a small slack variablef*) and low approximation accuracy.
According to (4), a large slack variable will cause the empirical
error to have a large impact with relation to the regularized
term. Therefore, the recent training data points by using a
smaller value ofs will be penalized more heavily than the
distant training data points by using a larger value:ofrhe
characteristic of the solution of SVM can also be used to
explain that there are more weights in the recent training data
points than in the distant training data points. In SVM, the
solution to the problem is represented by support vectors. What
are support vectors? In regression estimation, support vectors
are the training data points lying on or outside thlbound of
the decision function. Therefore, the number of support vectors
decreases asincreases. As support vectors are a decreasing
function of¢, the recent training data points by using a smaller
e will have a larger probability of converging to the determinant
support vectors than the distant training data points by using a
largere. Thus, the recent training data points will obtain more
attention in the representation of the solution than the distant
training data points.

' The behaviors of the weight function (10) can be summarized
as follows. Some examples are illustrated in Fig. 9.

i) Whenb — 0, thenlim,_pe; = . In this case, the

. 0, @< (l/2) weights in all the training data points are equal 1.
Im G =41, i=(/2) i) Whenb — oo, then
2, i>(l/2).
: : . - o0, i< (l/2)
In this case, the weights for the first half of the training lime: =4 ¢ i=(1/2)
data points are reduced to zero while the weights for the oo OiSE. i> (1/2).

second half of the training data points are equal, tand

0, i < (1/2)
Exsvv =13 Esvm, = (1/2)
2Bsvm, 1> (1/2).

i) When a € [0,00] anda increases, the weights for the

In this case, the weights for the first half of the training
data points are increased to an infinite value while the
weights for the second half of the training data points are
equal to0.5.

i) When b € [0,00] andb increases, the weights for the

first half of the training data points become smaller while
the weights for the second half of the training data points
become larger.

first half of the training data points become larger while
the weights for the second half of the training data points
become smaller.
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Thus, the regularized risk function in ASVM is calculated ashe dual function of (11) takes the following form:

follows: l !
l W(al(»*)) :Zyi(ai—a;‘)—ZEi(ai—l—af)
.1 i=1 i=1
minimize §||fw||2 +Y Ci&+E) (11) L
- = 53> (ai—a}) (a; — af) K(xi, x;) (13)

subject to 2 =S J

yi —w-p(x;) —b< e + & with the constraints

1
)+ -y <e €, i=1,... \ ,
w ¢(.T1)+b %_&,4‘51, (2 1 7l Z(ai_a?):07 OSQE)SCL/Z::l,,l (14)

£ > 0. (12) i=1
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TABLE VIl
RESULTS OFASVM AND WBP
Futures ASVM WBP
NMSE MAE DS NMSE MAE DS
CME-SP 1.0250 0.5339 47.84 1.0442 0.5405 46.73
CBOT-US 1.0050 0.8033 48.54 1.0025 0.7958 48.54
CBOT-BO 0.9981 0.6868 39.39 1.0270 0.6900 44.22
EUREX-BUND 0.9849 0.6853 46.16 1.0227 0.7055 47.04
MATIF-CAC40 0.9891 1.1717 43.22 0.9926 1.1771 47.24

t -value 2.3012> foosa =2.132

The SMO algorithm can still be used to optimize ASVM exvalidation set by fixingh or a at0. Then, varyb or a by fixing
cept that the Lagrange muItipIien:‘z*) are obtained according the obtained: or b. The combination of. andb that produce
to (13), and the upper bound valdg for every training data the best result on the validation set is used in ASVM. The
points is different and should be adapted according to (14). Teentrol rate in the WBP neural network is also chosen based on
selection of the optimal values of the free parameters of ASVMe validation set.
will become more challenging, due to the increase of two otherThe best results obtained in ASVM and WBP are listed in
free parameters andb. Table VII. By comparing the results with those of the stan-
In addition, the weighted BP (WBP) neural network whicldard SVM and BP as listed in Table VI, it is evident that both
uses the weight function (9) is also examined in the experimeASVM and WBP have smaller NMSE and MAE, but larger DS
The error risk function of the standard BP neural network than their corresponding standard methods. The resultis consis-
expressed by tent in all of the five futures. The result means that ASVM and
1 WBP can forecast more closely to the actual values of RDP+5
Egp = - Z (y; — f(:vi))2 . (15) thantheir corresponding standard methods. Further, there is also
2 i=1 greater consistency between the predicted and actual RDP+5 in
So the error risk function of the WBP neural network has th&SvVM and WBP than their corresponding standard methods.
following formula: The paired:-test shows that ASVM outperforms the standard
1< 5 SVM with o« = 2.5% significance level for a one-tailed test
Ewep = 5 > Cilyi — flai)) (16) based on the NMSE of the testing set, and WBP outperforms the
=l ) standard BP withh = 10% significance level for a one-tailed
whereC; has the function (9). Based on the gradient descegk; Table VIl also shows that ASVM has smaller NMSE and
method, the weights of the WBP neural network are updatgf e than WBP in four futures contracts (CEM-SP, CBOT-BO,

according to (17). EUREX-BUND, and MATIF-CAC40). In CBOT-US, there is
IEwnp — iaEBP (17) slightly smaller NMSE and MAE in WBP. The pairgdtest
ow ow shows that ASVM outperforms WBP with = 5% signifi-

That is, the weights of the WBP neural network are updated e |evel for a one-tailed test. The maximum, minimum, and
by an amount equal to the product of the weight funcion o4 yalues of the NMSE of the testing set obtained in ASVM,
and the value updated in the standard BP neural network. Soﬂh‘@standard SVM, WBP, and the standard BP are illustrated in
updating of the weights of the WBP neural network is irrelevapt, 1

to the order in which the training samples are presented to ther,o converged support vectors in ASVM and standard SVM
WBP neural network. A detailed description of the WBP neurgl., reported in Table VIII. Obviously, ASVM converges to
network can also be found in [4]. fewer support vectors than the standard SVM because of the

C. Results of ASVM use of the adaptive.

The purpose of the following experiment is to compare
ASVM with the standard SVM, as well as the WBP neural
network with the standard BP neural network. In each futuresThe use of SVM in financial time series forecasting is studied
contract and each data set, the same values of the free paramthiis paper. The performance of SVM is evaluated using five
ters of the standard SVM and the BP neural network are usesl futures contracts. The first series of experiments shows that
in ASVM and the WBP neural network. In ASVM, the controlSVM provides a promising alternative tool to the BP neural
ratese andb are chosen based on the following two steps: firshetwork for financial time series forecasting. As demonstrated
an optimala or b is selected based on the best result of tha the experiment, SVM forecasts significantly better than the

VI. CONCLUSION
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Fig. 10. The maximum, minimum, and mean values of the NMSE of the testing set obtained in ASVM, the standard SVM, WBP, and the standard BP.

TABLE VI ping training too late will allow the network to learn the
THE CONVERGED SUPPORTVECTORS INASVM AND STANDARD SVM complexity too much, resulting in overfitting the training
Futures ASVM SVM samples. Although we have the benefit of using the vali-
dation set, it is still difficult to guarantee there is no over-
CME-SP 784 903 fitting in the BP.
The experiment also shows that there is similar performance
CBOT-US 772 911 between the regularized RBF neural network and SVM. The
reason lies in the fact that both SVM and the regularized RBF
CBOT-BO 789 911 neural network minimize the regularized risk function, rather
than the empirical risk function as used in the BP neural net-
EUREX-BUND 89 909 work. So they are robust to overfitting, eventually resulting in
MATIE-CACA0 753 923 better generglization performance than the BP neural network.
The investigation of the parameters of SVM shows tRatnd

C play an important role on the performance of SVM. Improper
selection of the two parameters can cause either the overfitting

BP network in all but one futures. The superior performance gf underfitting of the training data points. Although the NMSE
SVM to the BP network lies in the following reasons. of the testing set is almost insensitive-tdhe number of support
1) SVMimplements the SRM principle which minimizes arvectors can be greatly reduced by using a largeesulting in

2)

3

~

upper bound of the generalization error rather than miré-sparse representation of solution.

mizes the training error, eventually leading to better gen- Finally, adaptive parameters are proposed to deal with struc-
eralization performance than the BP network which intural changes in the financial data. The proposed ascending
plements the ERM principle. regularization constant and descending tube could place more
BP may not converge to global solutions. The gradiemteights on the recent training data points and less weights on
steepest descent BP algorithm optimizes the weightstime distant training data points. This is desirable according to the
a way that the summed square error is minimized alopgoblem domain knowledge that in the nonstationary financial
the steepest slope of error surface. Global solution is nirhe series the recent training data points could provide more
guaranteed because the algorithm can become stuckmportant information than the distant training data points. The
the local minima that the error surface may include. Isimulation shows that ASVM could both achieve higher gener-
the case of SVM, training SVM is equivalent to solving alization performance and use fewer support vectors than the
linearly constrained quadratic programming, and the setandard SVM in financial forecasting. This also demonstrates
lution of SVM is always unique, optimal, and global.  that problem domain knowledge can be incorporated into SVM
The use of the validation set to stop the training of the improve the generalization performance.

network needs much art and care. Stopping training tooln the present paper, the approach of choosing the optimal
early will not allow the network to fully learn the com-values of the free parameters of ASVM is suboptimal. So it
plexity required for prediction. On the other hand, stopsannot be guaranteed that the used control rates and the other
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free parameters are the best. How to choose the optimal valug®] V. N. Vapnik, The Nature of Statistical Learning TheoryNew York:
of the free parameters of ASVM will be investigated in a fu-

ture work. More sophisticated weights functions that can closel

follow the dynamics of nonstationary financial time series will
also be explored in a future work for further improving the per-[22]
formance of ASVM.
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